MakeItFrom.com
Menu (ESC)

AWS ERNiCrFe-11 vs. 7175 Aluminum

AWS ERNiCrFe-11 belongs to the nickel alloys classification, while 7175 aluminum belongs to the aluminum alloys. There are 24 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AWS ERNiCrFe-11 and the bottom bar is 7175 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
70
Elongation at Break, % 47
3.8 to 5.9
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 76
26
Tensile Strength: Ultimate (UTS), MPa 740
520 to 570

Thermal Properties

Latent Heat of Fusion, J/g 320
380
Melting Completion (Liquidus), °C 1360
640
Melting Onset (Solidus), °C 1310
480
Specific Heat Capacity, J/kg-K 470
870
Thermal Conductivity, W/m-K 11
140
Thermal Expansion, µm/m-K 13
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
33
Electrical Conductivity: Equal Weight (Specific), % IACS 1.6
99

Otherwise Unclassified Properties

Base Metal Price, % relative 49
10
Density, g/cm3 8.2
3.0
Embodied Carbon, kg CO2/kg material 8.0
8.2
Embodied Energy, MJ/kg 110
150
Embodied Water, L/kg 280
1130

Common Calculations

Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 23
46
Strength to Weight: Axial, points 25
48 to 52
Strength to Weight: Bending, points 22
48 to 51
Thermal Diffusivity, mm2/s 2.9
53
Thermal Shock Resistance, points 20
23 to 25

Alloy Composition

Aluminum (Al), % 1.0 to 1.7
88 to 91.4
Carbon (C), % 0 to 0.1
0
Chromium (Cr), % 21 to 25
0.18 to 0.28
Copper (Cu), % 0 to 1.0
1.2 to 2.0
Iron (Fe), % 7.2 to 20
0 to 0.2
Magnesium (Mg), % 0
2.1 to 2.9
Manganese (Mn), % 0 to 1.0
0 to 0.1
Nickel (Ni), % 58 to 63
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 0.5
0 to 0.15
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0
0 to 0.1
Zinc (Zn), % 0
5.1 to 6.1
Residuals, % 0
0 to 0.15