MakeItFrom.com
Menu (ESC)

AWS ERNiFeCr-2 vs. C96800 Copper

AWS ERNiFeCr-2 belongs to the nickel alloys classification, while C96800 copper belongs to the copper alloys. There are 24 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is AWS ERNiFeCr-2 and the bottom bar is C96800 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 28
3.4
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 75
46
Tensile Strength: Ultimate (UTS), MPa 1300
1010

Thermal Properties

Latent Heat of Fusion, J/g 310
220
Melting Completion (Liquidus), °C 1460
1120
Melting Onset (Solidus), °C 1410
1060
Specific Heat Capacity, J/kg-K 450
390
Thermal Conductivity, W/m-K 12
52
Thermal Expansion, µm/m-K 13
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.4
10
Electrical Conductivity: Equal Weight (Specific), % IACS 1.5
10

Otherwise Unclassified Properties

Base Metal Price, % relative 75
34
Density, g/cm3 8.3
8.9
Embodied Carbon, kg CO2/kg material 13
3.4
Embodied Energy, MJ/kg 190
52
Embodied Water, L/kg 250
300

Common Calculations

Stiffness to Weight: Axial, points 13
7.6
Stiffness to Weight: Bending, points 23
19
Strength to Weight: Axial, points 43
32
Strength to Weight: Bending, points 32
25
Thermal Diffusivity, mm2/s 3.2
15
Thermal Shock Resistance, points 38
35

Alloy Composition

Aluminum (Al), % 0.2 to 0.8
0 to 0.1
Antimony (Sb), % 0
0 to 0.020
Boron (B), % 0 to 0.0030
0
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 17 to 21
0
Copper (Cu), % 0 to 0.3
87.1 to 90.5
Iron (Fe), % 11.6 to 24.6
0 to 0.5
Lead (Pb), % 0
0 to 0.0050
Manganese (Mn), % 0 to 0.35
0.050 to 0.3
Molybdenum (Mo), % 2.8 to 3.3
0
Nickel (Ni), % 50 to 55
9.5 to 10.5
Niobium (Nb), % 4.8 to 5.5
0
Phosphorus (P), % 0 to 0.015
0 to 0.0050
Silicon (Si), % 0 to 0.35
0
Sulfur (S), % 0 to 0.015
0 to 0.0025
Titanium (Ti), % 0.65 to 1.2
0
Zinc (Zn), % 0
0 to 1.0
Residuals, % 0
0 to 0.5