MakeItFrom.com
Menu (ESC)

AZ31B Magnesium vs. S15700 Stainless Steel

AZ31B magnesium belongs to the magnesium alloys classification, while S15700 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AZ31B magnesium and the bottom bar is S15700 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 45
200
Elongation at Break, % 5.6 to 12
1.1 to 29
Fatigue Strength, MPa 100 to 120
370 to 770
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 17
77
Shear Strength, MPa 130 to 160
770 to 1070
Tensile Strength: Ultimate (UTS), MPa 240 to 270
1180 to 1890
Tensile Strength: Yield (Proof), MPa 120 to 180
500 to 1770

Thermal Properties

Latent Heat of Fusion, J/g 350
290
Maximum Temperature: Mechanical, °C 150
870
Melting Completion (Liquidus), °C 600
1440
Melting Onset (Solidus), °C 600
1400
Specific Heat Capacity, J/kg-K 990
480
Thermal Conductivity, W/m-K 100
16
Thermal Expansion, µm/m-K 26
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 18
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 95
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 12
15
Density, g/cm3 1.7
7.8
Embodied Carbon, kg CO2/kg material 23
3.4
Embodied Energy, MJ/kg 160
47
Embodied Water, L/kg 970
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 13 to 25
17 to 270
Resilience: Unit (Modulus of Resilience), kJ/m3 170 to 370
640 to 4660
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 70
25
Strength to Weight: Axial, points 39 to 44
42 to 67
Strength to Weight: Bending, points 50 to 55
32 to 43
Thermal Diffusivity, mm2/s 62
4.2
Thermal Shock Resistance, points 14 to 16
39 to 63

Alloy Composition

Aluminum (Al), % 2.4 to 3.6
0.75 to 1.5
Calcium (Ca), % 0 to 0.040
0
Carbon (C), % 0
0 to 0.090
Chromium (Cr), % 0
14 to 16
Copper (Cu), % 0 to 0.050
0
Iron (Fe), % 0 to 0.050
69.6 to 76.8
Magnesium (Mg), % 93.6 to 97.1
0
Manganese (Mn), % 0.050 to 1.0
0 to 1.0
Molybdenum (Mo), % 0
2.0 to 3.0
Nickel (Ni), % 0 to 0.0050
6.5 to 7.7
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.1
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Zinc (Zn), % 0.5 to 1.5
0
Residuals, % 0 to 0.3
0

Comparable Variants