MakeItFrom.com
Menu (ESC)

B390.0 Aluminum vs. 5052 Aluminum

Both B390.0 aluminum and 5052 aluminum are aluminum alloys. They have 77% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is B390.0 aluminum and the bottom bar is 5052 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 76
68
Elongation at Break, % 0.88
1.1 to 22
Fatigue Strength, MPa 170
66 to 140
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 29
26
Tensile Strength: Ultimate (UTS), MPa 320
190 to 320
Tensile Strength: Yield (Proof), MPa 250
75 to 280

Thermal Properties

Latent Heat of Fusion, J/g 640
400
Maximum Temperature: Mechanical, °C 170
190
Melting Completion (Liquidus), °C 580
650
Melting Onset (Solidus), °C 580
610
Specific Heat Capacity, J/kg-K 880
900
Thermal Conductivity, W/m-K 130
140
Thermal Expansion, µm/m-K 20
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 27
35
Electrical Conductivity: Equal Weight (Specific), % IACS 88
120

Otherwise Unclassified Properties

Base Metal Price, % relative 11
9.5
Density, g/cm3 2.8
2.7
Embodied Carbon, kg CO2/kg material 7.3
8.6
Embodied Energy, MJ/kg 130
150
Embodied Water, L/kg 940
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.6
1.7 to 69
Resilience: Unit (Modulus of Resilience), kJ/m3 410
41 to 590
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 51
50
Strength to Weight: Axial, points 32
19 to 33
Strength to Weight: Bending, points 38
27 to 38
Thermal Diffusivity, mm2/s 55
57
Thermal Shock Resistance, points 15
8.3 to 14

Alloy Composition

Aluminum (Al), % 72.7 to 79.6
95.8 to 97.7
Chromium (Cr), % 0
0.15 to 0.35
Copper (Cu), % 4.0 to 5.0
0 to 0.1
Iron (Fe), % 0 to 1.3
0 to 0.4
Magnesium (Mg), % 0.45 to 0.65
2.2 to 2.8
Manganese (Mn), % 0 to 0.5
0 to 0.1
Nickel (Ni), % 0 to 0.1
0
Silicon (Si), % 16 to 18
0 to 0.25
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 1.5
0 to 0.1
Residuals, % 0
0 to 0.15