MakeItFrom.com
Menu (ESC)

B390.0 Aluminum vs. Nickel 825

B390.0 aluminum belongs to the aluminum alloys classification, while nickel 825 belongs to the nickel alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is B390.0 aluminum and the bottom bar is nickel 825.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 76
200
Elongation at Break, % 0.88
34
Fatigue Strength, MPa 170
190
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 29
78
Tensile Strength: Ultimate (UTS), MPa 320
650
Tensile Strength: Yield (Proof), MPa 250
260

Thermal Properties

Latent Heat of Fusion, J/g 640
300
Maximum Temperature: Mechanical, °C 170
980
Melting Completion (Liquidus), °C 580
1400
Melting Onset (Solidus), °C 580
1370
Specific Heat Capacity, J/kg-K 880
460
Thermal Conductivity, W/m-K 130
11
Thermal Expansion, µm/m-K 20
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 27
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 88
1.7

Otherwise Unclassified Properties

Base Metal Price, % relative 11
41
Density, g/cm3 2.8
8.2
Embodied Carbon, kg CO2/kg material 7.3
7.2
Embodied Energy, MJ/kg 130
100
Embodied Water, L/kg 940
230

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.6
180
Resilience: Unit (Modulus of Resilience), kJ/m3 410
170
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 51
24
Strength to Weight: Axial, points 32
22
Strength to Weight: Bending, points 38
20
Thermal Diffusivity, mm2/s 55
2.9
Thermal Shock Resistance, points 15
17

Alloy Composition

Aluminum (Al), % 72.7 to 79.6
0 to 0.2
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0
19.5 to 23.5
Copper (Cu), % 4.0 to 5.0
1.5 to 3.0
Iron (Fe), % 0 to 1.3
22 to 37.9
Magnesium (Mg), % 0.45 to 0.65
0
Manganese (Mn), % 0 to 0.5
0 to 1.0
Molybdenum (Mo), % 0
2.5 to 3.5
Nickel (Ni), % 0 to 0.1
38 to 46
Silicon (Si), % 16 to 18
0 to 0.050
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.1
0.6 to 1.2
Zinc (Zn), % 0 to 1.5
0
Residuals, % 0 to 0.2
0