MakeItFrom.com
Menu (ESC)

B390.0 Aluminum vs. S17700 Stainless Steel

B390.0 aluminum belongs to the aluminum alloys classification, while S17700 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is B390.0 aluminum and the bottom bar is S17700 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 76
200
Elongation at Break, % 0.88
1.0 to 23
Fatigue Strength, MPa 170
290 to 560
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 29
76
Tensile Strength: Ultimate (UTS), MPa 320
1180 to 1650
Tensile Strength: Yield (Proof), MPa 250
430 to 1210

Thermal Properties

Latent Heat of Fusion, J/g 640
290
Maximum Temperature: Mechanical, °C 170
890
Melting Completion (Liquidus), °C 580
1440
Melting Onset (Solidus), °C 580
1400
Specific Heat Capacity, J/kg-K 880
480
Thermal Conductivity, W/m-K 130
15
Thermal Expansion, µm/m-K 20
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 27
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 88
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 11
13
Density, g/cm3 2.8
7.7
Embodied Carbon, kg CO2/kg material 7.3
2.8
Embodied Energy, MJ/kg 130
40
Embodied Water, L/kg 940
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.6
15 to 210
Resilience: Unit (Modulus of Resilience), kJ/m3 410
460 to 3750
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 51
25
Strength to Weight: Axial, points 32
42 to 59
Strength to Weight: Bending, points 38
32 to 40
Thermal Diffusivity, mm2/s 55
4.1
Thermal Shock Resistance, points 15
39 to 54

Alloy Composition

Aluminum (Al), % 72.7 to 79.6
0.75 to 1.5
Carbon (C), % 0
0 to 0.090
Chromium (Cr), % 0
16 to 18
Copper (Cu), % 4.0 to 5.0
0
Iron (Fe), % 0 to 1.3
70.5 to 76.8
Magnesium (Mg), % 0.45 to 0.65
0
Manganese (Mn), % 0 to 0.5
0 to 1.0
Nickel (Ni), % 0 to 0.1
6.5 to 7.8
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 16 to 18
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 1.5
0
Residuals, % 0 to 0.2
0