MakeItFrom.com
Menu (ESC)

B443.0 Aluminum vs. 707.0 Aluminum

Both B443.0 aluminum and 707.0 aluminum are aluminum alloys. They have a moderately high 93% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is B443.0 aluminum and the bottom bar is 707.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
70
Elongation at Break, % 4.9
1.7 to 3.4
Fatigue Strength, MPa 55
75 to 140
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
26
Tensile Strength: Ultimate (UTS), MPa 150
270 to 300
Tensile Strength: Yield (Proof), MPa 50
170 to 250

Thermal Properties

Latent Heat of Fusion, J/g 470
380
Maximum Temperature: Mechanical, °C 170
180
Melting Completion (Liquidus), °C 620
630
Melting Onset (Solidus), °C 600
600
Solidification (Pattern Maker's) Shrinkage, % 1.3
1.6
Specific Heat Capacity, J/kg-K 900
880
Thermal Conductivity, W/m-K 150
150
Thermal Expansion, µm/m-K 22
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 38
37
Electrical Conductivity: Equal Weight (Specific), % IACS 130
110

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.7
2.9
Embodied Carbon, kg CO2/kg material 8.0
8.3
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1130
1140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 5.6
4.3 to 8.6
Resilience: Unit (Modulus of Resilience), kJ/m3 18
210 to 430
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 52
47
Strength to Weight: Axial, points 15
26 to 29
Strength to Weight: Bending, points 23
32 to 34
Thermal Diffusivity, mm2/s 61
58
Thermal Shock Resistance, points 6.8
12 to 13

Alloy Composition

Aluminum (Al), % 91.9 to 95.5
90.5 to 93.6
Chromium (Cr), % 0
0.2 to 0.4
Copper (Cu), % 0 to 0.15
0 to 0.2
Iron (Fe), % 0 to 0.8
0 to 0.8
Magnesium (Mg), % 0 to 0.050
1.8 to 2.4
Manganese (Mn), % 0 to 0.35
0.4 to 0.6
Silicon (Si), % 4.5 to 6.0
0 to 0.2
Titanium (Ti), % 0 to 0.25
0 to 0.25
Zinc (Zn), % 0 to 0.35
4.0 to 4.5
Residuals, % 0
0 to 0.15