MakeItFrom.com
Menu (ESC)

B443.0 Aluminum vs. EN 1.3961 Alloy

B443.0 aluminum belongs to the aluminum alloys classification, while EN 1.3961 alloy belongs to the iron alloys. There are 24 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is B443.0 aluminum and the bottom bar is EN 1.3961 alloy.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
190
Elongation at Break, % 4.9
31
Poisson's Ratio 0.33
0.3
Shear Modulus, GPa 26
72
Shear Strength, MPa 110
300
Tensile Strength: Ultimate (UTS), MPa 150
450
Tensile Strength: Yield (Proof), MPa 50
310

Thermal Properties

Latent Heat of Fusion, J/g 470
270
Melting Completion (Liquidus), °C 620
1430
Melting Onset (Solidus), °C 600
1390
Specific Heat Capacity, J/kg-K 900
460
Thermal Expansion, µm/m-K 22
1.3

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
25
Density, g/cm3 2.7
8.2
Embodied Carbon, kg CO2/kg material 8.0
4.8
Embodied Energy, MJ/kg 150
66
Embodied Water, L/kg 1130
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 5.6
130
Resilience: Unit (Modulus of Resilience), kJ/m3 18
250
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 52
23
Strength to Weight: Axial, points 15
15
Strength to Weight: Bending, points 23
16
Thermal Shock Resistance, points 6.8
130

Alloy Composition

Aluminum (Al), % 91.9 to 95.5
0
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0
0 to 0.25
Copper (Cu), % 0 to 0.15
0
Iron (Fe), % 0 to 0.8
60.7 to 65
Magnesium (Mg), % 0 to 0.050
0
Manganese (Mn), % 0 to 0.35
0 to 0.5
Molybdenum (Mo), % 0
0 to 1.0
Nickel (Ni), % 0
35 to 37
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 4.5 to 6.0
0 to 0.5
Sulfur (S), % 0
0 to 0.020
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 0.35
0
Residuals, % 0 to 0.15
0