MakeItFrom.com
Menu (ESC)

B443.0 Aluminum vs. EN 1.8880 Steel

B443.0 aluminum belongs to the aluminum alloys classification, while EN 1.8880 steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is B443.0 aluminum and the bottom bar is EN 1.8880 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 43
250
Elastic (Young's, Tensile) Modulus, GPa 70
190
Elongation at Break, % 4.9
16
Fatigue Strength, MPa 55
470
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
73
Shear Strength, MPa 110
510
Tensile Strength: Ultimate (UTS), MPa 150
830
Tensile Strength: Yield (Proof), MPa 50
720

Thermal Properties

Latent Heat of Fusion, J/g 470
260
Maximum Temperature: Mechanical, °C 170
420
Melting Completion (Liquidus), °C 620
1460
Melting Onset (Solidus), °C 600
1420
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 150
40
Thermal Expansion, µm/m-K 22
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 38
8.1
Electrical Conductivity: Equal Weight (Specific), % IACS 130
9.3

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
3.7
Density, g/cm3 2.7
7.8
Embodied Carbon, kg CO2/kg material 8.0
1.9
Embodied Energy, MJ/kg 150
26
Embodied Water, L/kg 1130
54

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 5.6
130
Resilience: Unit (Modulus of Resilience), kJ/m3 18
1370
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 52
24
Strength to Weight: Axial, points 15
29
Strength to Weight: Bending, points 23
25
Thermal Diffusivity, mm2/s 61
11
Thermal Shock Resistance, points 6.8
24

Alloy Composition

Aluminum (Al), % 91.9 to 95.5
0
Boron (B), % 0
0 to 0.0050
Carbon (C), % 0
0 to 0.2
Chromium (Cr), % 0
0 to 1.5
Copper (Cu), % 0 to 0.15
0 to 0.3
Iron (Fe), % 0 to 0.8
91.9 to 100
Magnesium (Mg), % 0 to 0.050
0
Manganese (Mn), % 0 to 0.35
0 to 1.7
Molybdenum (Mo), % 0
0 to 0.7
Nickel (Ni), % 0
0 to 2.5
Niobium (Nb), % 0
0 to 0.060
Nitrogen (N), % 0
0 to 0.015
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 4.5 to 6.0
0 to 0.8
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0 to 0.25
0 to 0.050
Vanadium (V), % 0
0 to 0.12
Zinc (Zn), % 0 to 0.35
0
Zirconium (Zr), % 0
0 to 0.15
Residuals, % 0 to 0.15
0