MakeItFrom.com
Menu (ESC)

B443.0 Aluminum vs. C70700 Copper-nickel

B443.0 aluminum belongs to the aluminum alloys classification, while C70700 copper-nickel belongs to the copper alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is B443.0 aluminum and the bottom bar is C70700 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 43
73
Elastic (Young's, Tensile) Modulus, GPa 70
120
Elongation at Break, % 4.9
39
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 26
46
Shear Strength, MPa 110
220
Tensile Strength: Ultimate (UTS), MPa 150
320
Tensile Strength: Yield (Proof), MPa 50
110

Thermal Properties

Latent Heat of Fusion, J/g 470
220
Maximum Temperature: Mechanical, °C 170
220
Melting Completion (Liquidus), °C 620
1120
Melting Onset (Solidus), °C 600
1060
Specific Heat Capacity, J/kg-K 900
390
Thermal Conductivity, W/m-K 150
59
Thermal Expansion, µm/m-K 22
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 38
11
Electrical Conductivity: Equal Weight (Specific), % IACS 130
12

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
34
Density, g/cm3 2.7
8.9
Embodied Carbon, kg CO2/kg material 8.0
3.4
Embodied Energy, MJ/kg 150
52
Embodied Water, L/kg 1130
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 5.6
100
Resilience: Unit (Modulus of Resilience), kJ/m3 18
51
Stiffness to Weight: Axial, points 15
7.6
Stiffness to Weight: Bending, points 52
19
Strength to Weight: Axial, points 15
10
Strength to Weight: Bending, points 23
12
Thermal Diffusivity, mm2/s 61
17
Thermal Shock Resistance, points 6.8
12

Alloy Composition

Aluminum (Al), % 91.9 to 95.5
0
Copper (Cu), % 0 to 0.15
88.5 to 90.5
Iron (Fe), % 0 to 0.8
0 to 0.050
Magnesium (Mg), % 0 to 0.050
0
Manganese (Mn), % 0 to 0.35
0 to 0.5
Nickel (Ni), % 0
9.5 to 10.5
Silicon (Si), % 4.5 to 6.0
0
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 0.35
0
Residuals, % 0
0 to 0.5