MakeItFrom.com
Menu (ESC)

B535.0 Aluminum vs. ACI-ASTM CA15 Steel

B535.0 aluminum belongs to the aluminum alloys classification, while ACI-ASTM CA15 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is B535.0 aluminum and the bottom bar is ACI-ASTM CA15 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 65
220
Elastic (Young's, Tensile) Modulus, GPa 66
190
Elongation at Break, % 10
21
Fatigue Strength, MPa 62
370
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 25
76
Tensile Strength: Ultimate (UTS), MPa 260
700
Tensile Strength: Yield (Proof), MPa 130
570

Thermal Properties

Latent Heat of Fusion, J/g 390
280
Maximum Temperature: Mechanical, °C 170
750
Melting Completion (Liquidus), °C 630
1440
Melting Onset (Solidus), °C 550
1500
Specific Heat Capacity, J/kg-K 910
480
Thermal Conductivity, W/m-K 96
25
Thermal Expansion, µm/m-K 25
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 24
3.0
Electrical Conductivity: Equal Weight (Specific), % IACS 82
3.5

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
7.5
Density, g/cm3 2.6
7.7
Embodied Carbon, kg CO2/kg material 9.4
2.0
Embodied Energy, MJ/kg 160
28
Embodied Water, L/kg 1180
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 22
140
Resilience: Unit (Modulus of Resilience), kJ/m3 130
820
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 51
25
Strength to Weight: Axial, points 28
25
Strength to Weight: Bending, points 35
23
Thermal Diffusivity, mm2/s 40
6.7
Thermal Shock Resistance, points 11
26

Alloy Composition

Aluminum (Al), % 91.7 to 93.4
0
Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0
11.5 to 14
Copper (Cu), % 0 to 0.1
0
Iron (Fe), % 0 to 0.15
81.8 to 88.5
Magnesium (Mg), % 6.5 to 7.5
0
Manganese (Mn), % 0 to 0.050
0 to 1.0
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0
0 to 1.0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.15
0 to 1.5
Sulfur (S), % 0
0 to 0.040
Titanium (Ti), % 0.1 to 0.25
0
Residuals, % 0 to 0.15
0