MakeItFrom.com
Menu (ESC)

B535.0 Aluminum vs. ASTM A356 Grade 8

B535.0 aluminum belongs to the aluminum alloys classification, while ASTM A356 grade 8 belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is B535.0 aluminum and the bottom bar is ASTM A356 grade 8.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 65
190
Elastic (Young's, Tensile) Modulus, GPa 66
190
Elongation at Break, % 10
21
Fatigue Strength, MPa 62
270
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 25
73
Tensile Strength: Ultimate (UTS), MPa 260
630
Tensile Strength: Yield (Proof), MPa 130
390

Thermal Properties

Latent Heat of Fusion, J/g 390
260
Maximum Temperature: Mechanical, °C 170
440
Melting Completion (Liquidus), °C 630
1470
Melting Onset (Solidus), °C 550
1430
Specific Heat Capacity, J/kg-K 910
470
Thermal Conductivity, W/m-K 96
38
Thermal Expansion, µm/m-K 25
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 24
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 82
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
3.5
Density, g/cm3 2.6
7.8
Embodied Carbon, kg CO2/kg material 9.4
2.0
Embodied Energy, MJ/kg 160
26
Embodied Water, L/kg 1180
55

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 22
110
Resilience: Unit (Modulus of Resilience), kJ/m3 130
390
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 51
24
Strength to Weight: Axial, points 28
22
Strength to Weight: Bending, points 35
21
Thermal Diffusivity, mm2/s 40
10
Thermal Shock Resistance, points 11
18

Alloy Composition

Aluminum (Al), % 91.7 to 93.4
0
Carbon (C), % 0
0 to 0.2
Chromium (Cr), % 0
1.0 to 1.5
Copper (Cu), % 0 to 0.1
0
Iron (Fe), % 0 to 0.15
95.4 to 97.4
Magnesium (Mg), % 6.5 to 7.5
0
Manganese (Mn), % 0 to 0.050
0.5 to 0.9
Molybdenum (Mo), % 0
0.9 to 1.2
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0 to 0.15
0.2 to 0.6
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0.1 to 0.25
0
Vanadium (V), % 0
0.050 to 0.15
Residuals, % 0 to 0.15
0