MakeItFrom.com
Menu (ESC)

B535.0 Aluminum vs. EN 1.3538 Steel

B535.0 aluminum belongs to the aluminum alloys classification, while EN 1.3538 steel belongs to the iron alloys. There are 25 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is B535.0 aluminum and the bottom bar is EN 1.3538 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 65
200 to 220
Elastic (Young's, Tensile) Modulus, GPa 66
190
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 25
73
Tensile Strength: Ultimate (UTS), MPa 260
670 to 740

Thermal Properties

Latent Heat of Fusion, J/g 390
250
Maximum Temperature: Mechanical, °C 170
440
Melting Completion (Liquidus), °C 630
1450
Melting Onset (Solidus), °C 550
1410
Specific Heat Capacity, J/kg-K 910
470
Thermal Conductivity, W/m-K 96
41
Thermal Expansion, µm/m-K 25
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 24
7.4
Electrical Conductivity: Equal Weight (Specific), % IACS 82
8.5

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
3.0
Density, g/cm3 2.6
7.8
Embodied Carbon, kg CO2/kg material 9.4
1.6
Embodied Energy, MJ/kg 160
21
Embodied Water, L/kg 1180
56

Common Calculations

Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 51
24
Strength to Weight: Axial, points 28
24 to 26
Strength to Weight: Bending, points 35
22 to 23
Thermal Diffusivity, mm2/s 40
11
Thermal Shock Resistance, points 11
20 to 22

Alloy Composition

Aluminum (Al), % 91.7 to 93.4
0 to 0.050
Carbon (C), % 0
0.93 to 1.1
Chromium (Cr), % 0
1.7 to 2.0
Copper (Cu), % 0 to 0.1
0 to 0.3
Iron (Fe), % 0 to 0.15
96 to 97.2
Magnesium (Mg), % 6.5 to 7.5
0
Manganese (Mn), % 0 to 0.050
0.6 to 0.8
Molybdenum (Mo), % 0
0.4 to 0.5
Oxygen (O), % 0
0 to 0.0015
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0 to 0.15
0.15 to 0.35
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0.1 to 0.25
0
Residuals, % 0 to 0.15
0