MakeItFrom.com
Menu (ESC)

B535.0 Aluminum vs. EN 1.4415 Stainless Steel

B535.0 aluminum belongs to the aluminum alloys classification, while EN 1.4415 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is B535.0 aluminum and the bottom bar is EN 1.4415 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 66
200
Elongation at Break, % 10
17 to 20
Fatigue Strength, MPa 62
470 to 510
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 25
77
Shear Strength, MPa 210
520 to 570
Tensile Strength: Ultimate (UTS), MPa 260
830 to 930
Tensile Strength: Yield (Proof), MPa 130
730 to 840

Thermal Properties

Latent Heat of Fusion, J/g 390
280
Maximum Temperature: Mechanical, °C 170
790
Melting Completion (Liquidus), °C 630
1460
Melting Onset (Solidus), °C 550
1420
Specific Heat Capacity, J/kg-K 910
470
Thermal Conductivity, W/m-K 96
19
Thermal Expansion, µm/m-K 25
9.9

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 24
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 82
2.8

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
13
Density, g/cm3 2.6
7.9
Embodied Carbon, kg CO2/kg material 9.4
3.6
Embodied Energy, MJ/kg 160
51
Embodied Water, L/kg 1180
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 22
150 to 160
Resilience: Unit (Modulus of Resilience), kJ/m3 130
1350 to 1790
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 51
25
Strength to Weight: Axial, points 28
29 to 33
Strength to Weight: Bending, points 35
25 to 27
Thermal Diffusivity, mm2/s 40
5.1
Thermal Shock Resistance, points 11
30 to 34

Alloy Composition

Aluminum (Al), % 91.7 to 93.4
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
11.5 to 13.5
Copper (Cu), % 0 to 0.1
0
Iron (Fe), % 0 to 0.15
75.9 to 82.4
Magnesium (Mg), % 6.5 to 7.5
0
Manganese (Mn), % 0 to 0.050
0 to 0.5
Molybdenum (Mo), % 0
1.5 to 2.5
Nickel (Ni), % 0
4.5 to 6.5
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.15
0 to 0.5
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0.1 to 0.25
0 to 0.010
Vanadium (V), % 0
0.1 to 0.5
Residuals, % 0 to 0.15
0