MakeItFrom.com
Menu (ESC)

B535.0 Aluminum vs. EN 1.4961 Stainless Steel

B535.0 aluminum belongs to the aluminum alloys classification, while EN 1.4961 stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is B535.0 aluminum and the bottom bar is EN 1.4961 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 65
180
Elastic (Young's, Tensile) Modulus, GPa 66
200
Elongation at Break, % 10
39
Fatigue Strength, MPa 62
190
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 25
76
Shear Strength, MPa 210
420
Tensile Strength: Ultimate (UTS), MPa 260
610
Tensile Strength: Yield (Proof), MPa 130
220

Thermal Properties

Latent Heat of Fusion, J/g 390
290
Maximum Temperature: Mechanical, °C 170
890
Melting Completion (Liquidus), °C 630
1430
Melting Onset (Solidus), °C 550
1390
Specific Heat Capacity, J/kg-K 910
480
Thermal Conductivity, W/m-K 96
16
Thermal Expansion, µm/m-K 25
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 24
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 82
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
21
Density, g/cm3 2.6
7.9
Embodied Carbon, kg CO2/kg material 9.4
4.0
Embodied Energy, MJ/kg 160
57
Embodied Water, L/kg 1180
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 22
190
Resilience: Unit (Modulus of Resilience), kJ/m3 130
120
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 51
25
Strength to Weight: Axial, points 28
22
Strength to Weight: Bending, points 35
20
Thermal Diffusivity, mm2/s 40
4.3
Thermal Shock Resistance, points 11
14

Alloy Composition

Aluminum (Al), % 91.7 to 93.4
0
Carbon (C), % 0
0.040 to 0.1
Chromium (Cr), % 0
15 to 17
Copper (Cu), % 0 to 0.1
0
Iron (Fe), % 0 to 0.15
65.6 to 72.3
Magnesium (Mg), % 6.5 to 7.5
0
Manganese (Mn), % 0 to 0.050
0 to 1.5
Nickel (Ni), % 0
12 to 14
Niobium (Nb), % 0
0.4 to 1.2
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0 to 0.15
0.3 to 0.6
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0.1 to 0.25
0
Residuals, % 0 to 0.15
0