MakeItFrom.com
Menu (ESC)

B535.0 Aluminum vs. SAE-AISI M43 Steel

B535.0 aluminum belongs to the aluminum alloys classification, while SAE-AISI M43 steel belongs to the iron alloys. There are 21 material properties with values for both materials. Properties with values for just one material (11, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is B535.0 aluminum and the bottom bar is SAE-AISI M43 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 66
200
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 25
77
Tensile Strength: Ultimate (UTS), MPa 260
810 to 2290

Thermal Properties

Latent Heat of Fusion, J/g 390
270
Melting Completion (Liquidus), °C 630
1550
Melting Onset (Solidus), °C 550
1500
Specific Heat Capacity, J/kg-K 910
450
Thermal Conductivity, W/m-K 96
19
Thermal Expansion, µm/m-K 25
12

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
33
Density, g/cm3 2.6
8.2
Embodied Carbon, kg CO2/kg material 9.4
8.5
Embodied Energy, MJ/kg 160
120
Embodied Water, L/kg 1180
140

Common Calculations

Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 51
24
Strength to Weight: Axial, points 28
27 to 77
Strength to Weight: Bending, points 35
24 to 47
Thermal Diffusivity, mm2/s 40
5.3
Thermal Shock Resistance, points 11
25 to 71

Alloy Composition

Aluminum (Al), % 91.7 to 93.4
0
Carbon (C), % 0
1.2 to 1.3
Chromium (Cr), % 0
3.5 to 4.3
Cobalt (Co), % 0
7.8 to 8.8
Copper (Cu), % 0 to 0.1
0 to 0.25
Iron (Fe), % 0 to 0.15
70.8 to 76
Magnesium (Mg), % 6.5 to 7.5
0
Manganese (Mn), % 0 to 0.050
0.2 to 0.4
Molybdenum (Mo), % 0
7.5 to 8.5
Nickel (Ni), % 0
0 to 0.3
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.15
0.15 to 0.65
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0.1 to 0.25
0
Tungsten (W), % 0
2.3 to 3.0
Vanadium (V), % 0
1.5 to 1.8
Residuals, % 0 to 0.15
0