MakeItFrom.com
Menu (ESC)

B535.0 Aluminum vs. C19025 Copper

B535.0 aluminum belongs to the aluminum alloys classification, while C19025 copper belongs to the copper alloys. There are 26 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is B535.0 aluminum and the bottom bar is C19025 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 66
120
Elongation at Break, % 10
8.0 to 17
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 25
43
Shear Strength, MPa 210
300 to 360
Tensile Strength: Ultimate (UTS), MPa 260
480 to 620

Thermal Properties

Latent Heat of Fusion, J/g 390
210
Maximum Temperature: Mechanical, °C 170
200
Melting Completion (Liquidus), °C 630
1080
Melting Onset (Solidus), °C 550
1020
Specific Heat Capacity, J/kg-K 910
380
Thermal Conductivity, W/m-K 96
160
Thermal Expansion, µm/m-K 25
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 24
40
Electrical Conductivity: Equal Weight (Specific), % IACS 82
40

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
31
Density, g/cm3 2.6
8.9
Embodied Carbon, kg CO2/kg material 9.4
2.8
Embodied Energy, MJ/kg 160
44
Embodied Water, L/kg 1180
320

Common Calculations

Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 51
18
Strength to Weight: Axial, points 28
15 to 19
Strength to Weight: Bending, points 35
15 to 18
Thermal Diffusivity, mm2/s 40
47
Thermal Shock Resistance, points 11
17 to 22

Alloy Composition

Aluminum (Al), % 91.7 to 93.4
0
Copper (Cu), % 0 to 0.1
97.1 to 98.5
Iron (Fe), % 0 to 0.15
0
Magnesium (Mg), % 6.5 to 7.5
0
Manganese (Mn), % 0 to 0.050
0
Nickel (Ni), % 0
0.8 to 1.2
Phosphorus (P), % 0
0.030 to 0.070
Silicon (Si), % 0 to 0.15
0
Tin (Sn), % 0
0.7 to 1.1
Titanium (Ti), % 0.1 to 0.25
0
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.3