MakeItFrom.com
Menu (ESC)

B535.0 Aluminum vs. C94900 Bronze

B535.0 aluminum belongs to the aluminum alloys classification, while C94900 bronze belongs to the copper alloys. There are 26 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is B535.0 aluminum and the bottom bar is C94900 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 66
110
Elongation at Break, % 10
17
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 25
41
Tensile Strength: Ultimate (UTS), MPa 260
300
Tensile Strength: Yield (Proof), MPa 130
130

Thermal Properties

Latent Heat of Fusion, J/g 390
190
Maximum Temperature: Mechanical, °C 170
170
Melting Completion (Liquidus), °C 630
980
Melting Onset (Solidus), °C 550
910
Specific Heat Capacity, J/kg-K 910
370
Thermal Expansion, µm/m-K 25
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 24
14
Electrical Conductivity: Equal Weight (Specific), % IACS 82
14

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
32
Density, g/cm3 2.6
8.8
Embodied Carbon, kg CO2/kg material 9.4
3.4
Embodied Energy, MJ/kg 160
55
Embodied Water, L/kg 1180
350

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 22
41
Resilience: Unit (Modulus of Resilience), kJ/m3 130
72
Stiffness to Weight: Axial, points 14
6.9
Stiffness to Weight: Bending, points 51
18
Strength to Weight: Axial, points 28
9.4
Strength to Weight: Bending, points 35
11
Thermal Shock Resistance, points 11
11

Alloy Composition

Aluminum (Al), % 91.7 to 93.4
0 to 0.0050
Antimony (Sb), % 0
0 to 0.25
Copper (Cu), % 0 to 0.1
79 to 81
Iron (Fe), % 0 to 0.15
0 to 0.3
Lead (Pb), % 0
4.0 to 6.0
Magnesium (Mg), % 6.5 to 7.5
0
Manganese (Mn), % 0 to 0.050
0 to 0.1
Nickel (Ni), % 0
4.0 to 6.0
Phosphorus (P), % 0
0 to 0.050
Silicon (Si), % 0 to 0.15
0 to 0.0050
Sulfur (S), % 0
0 to 0.080
Tin (Sn), % 0
4.0 to 6.0
Titanium (Ti), % 0.1 to 0.25
0
Zinc (Zn), % 0
4.0 to 6.0
Residuals, % 0
0 to 0.8