MakeItFrom.com
Menu (ESC)

C355.0 Aluminum vs. 6012 Aluminum

Both C355.0 aluminum and 6012 aluminum are aluminum alloys. They have a moderately high 95% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C355.0 aluminum and the bottom bar is 6012 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
69
Elongation at Break, % 2.7 to 3.8
9.1 to 11
Fatigue Strength, MPa 76 to 84
55 to 100
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
26
Tensile Strength: Ultimate (UTS), MPa 290 to 310
220 to 320
Tensile Strength: Yield (Proof), MPa 200 to 230
110 to 260

Thermal Properties

Latent Heat of Fusion, J/g 470
400
Maximum Temperature: Mechanical, °C 170
170
Melting Completion (Liquidus), °C 620
640
Melting Onset (Solidus), °C 570
570
Specific Heat Capacity, J/kg-K 900
890
Thermal Conductivity, W/m-K 150
160
Thermal Expansion, µm/m-K 22
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 39
45
Electrical Conductivity: Equal Weight (Specific), % IACS 130
140

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.7
2.9
Embodied Carbon, kg CO2/kg material 8.0
8.2
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1120
1170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 7.5 to 9.8
21 to 28
Resilience: Unit (Modulus of Resilience), kJ/m3 290 to 380
94 to 480
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 51
48
Strength to Weight: Axial, points 30 to 32
22 to 32
Strength to Weight: Bending, points 36 to 37
29 to 37
Thermal Diffusivity, mm2/s 60
62
Thermal Shock Resistance, points 13 to 14
10 to 14

Alloy Composition

Aluminum (Al), % 91.7 to 94.1
92.2 to 98
Bismuth (Bi), % 0
0 to 0.7
Chromium (Cr), % 0
0 to 0.3
Copper (Cu), % 1.0 to 1.5
0 to 0.1
Iron (Fe), % 0 to 0.2
0 to 0.5
Lead (Pb), % 0
0.4 to 2.0
Magnesium (Mg), % 0.4 to 0.6
0.6 to 1.2
Manganese (Mn), % 0 to 0.1
0.4 to 1.0
Silicon (Si), % 4.5 to 5.5
0.6 to 1.4
Titanium (Ti), % 0 to 0.2
0 to 0.2
Zinc (Zn), % 0 to 0.1
0 to 0.3
Residuals, % 0
0 to 0.15

Comparable Variants