MakeItFrom.com
Menu (ESC)

C355.0 Aluminum vs. AISI 201LN Stainless Steel

C355.0 aluminum belongs to the aluminum alloys classification, while AISI 201LN stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C355.0 aluminum and the bottom bar is AISI 201LN stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 86 to 90
210 to 320
Elastic (Young's, Tensile) Modulus, GPa 70
200
Elongation at Break, % 2.7 to 3.8
25 to 51
Fatigue Strength, MPa 76 to 84
340 to 540
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
77
Tensile Strength: Ultimate (UTS), MPa 290 to 310
740 to 1060
Tensile Strength: Yield (Proof), MPa 200 to 230
350 to 770

Thermal Properties

Latent Heat of Fusion, J/g 470
280
Maximum Temperature: Mechanical, °C 170
880
Melting Completion (Liquidus), °C 620
1410
Melting Onset (Solidus), °C 570
1370
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 150
15
Thermal Expansion, µm/m-K 22
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 39
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 130
2.9

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
12
Density, g/cm3 2.7
7.7
Embodied Carbon, kg CO2/kg material 8.0
2.6
Embodied Energy, MJ/kg 150
38
Embodied Water, L/kg 1120
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 7.5 to 9.8
230 to 310
Resilience: Unit (Modulus of Resilience), kJ/m3 290 to 380
310 to 1520
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 51
25
Strength to Weight: Axial, points 30 to 32
27 to 38
Strength to Weight: Bending, points 36 to 37
24 to 30
Thermal Diffusivity, mm2/s 60
4.0
Thermal Shock Resistance, points 13 to 14
16 to 23

Alloy Composition

Aluminum (Al), % 91.7 to 94.1
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
16 to 17.5
Copper (Cu), % 1.0 to 1.5
0 to 1.0
Iron (Fe), % 0 to 0.2
67.9 to 73.5
Magnesium (Mg), % 0.4 to 0.6
0
Manganese (Mn), % 0 to 0.1
6.4 to 7.5
Nickel (Ni), % 0
4.0 to 5.0
Nitrogen (N), % 0
0.1 to 0.25
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 4.5 to 5.5
0 to 0.75
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0