MakeItFrom.com
Menu (ESC)

C355.0 Aluminum vs. ASTM Grade HD Steel

C355.0 aluminum belongs to the aluminum alloys classification, while ASTM grade HD steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C355.0 aluminum and the bottom bar is ASTM grade HD steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
200
Elongation at Break, % 2.7 to 3.8
9.1
Fatigue Strength, MPa 76 to 84
140
Poisson's Ratio 0.33
0.27
Shear Modulus, GPa 26
80
Tensile Strength: Ultimate (UTS), MPa 290 to 310
590
Tensile Strength: Yield (Proof), MPa 200 to 230
270

Thermal Properties

Latent Heat of Fusion, J/g 470
310
Maximum Temperature: Mechanical, °C 170
1100
Melting Completion (Liquidus), °C 620
1410
Melting Onset (Solidus), °C 570
1370
Specific Heat Capacity, J/kg-K 900
490
Thermal Conductivity, W/m-K 150
16
Thermal Expansion, µm/m-K 22
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 39
2.1
Electrical Conductivity: Equal Weight (Specific), % IACS 130
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
17
Density, g/cm3 2.7
7.7
Embodied Carbon, kg CO2/kg material 8.0
3.1
Embodied Energy, MJ/kg 150
45
Embodied Water, L/kg 1120
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 7.5 to 9.8
44
Resilience: Unit (Modulus of Resilience), kJ/m3 290 to 380
180
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 51
26
Strength to Weight: Axial, points 30 to 32
21
Strength to Weight: Bending, points 36 to 37
20
Thermal Diffusivity, mm2/s 60
4.3
Thermal Shock Resistance, points 13 to 14
19

Alloy Composition

Aluminum (Al), % 91.7 to 94.1
0
Carbon (C), % 0
0 to 0.5
Chromium (Cr), % 0
26 to 30
Copper (Cu), % 1.0 to 1.5
0
Iron (Fe), % 0 to 0.2
58.4 to 70
Magnesium (Mg), % 0.4 to 0.6
0
Manganese (Mn), % 0 to 0.1
0 to 1.5
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0
4.0 to 7.0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 4.5 to 5.5
0 to 2.0
Sulfur (S), % 0
0 to 0.040
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0