MakeItFrom.com
Menu (ESC)

C355.0 Aluminum vs. EN 1.4374 Stainless Steel

C355.0 aluminum belongs to the aluminum alloys classification, while EN 1.4374 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C355.0 aluminum and the bottom bar is EN 1.4374 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 86 to 90
230
Elastic (Young's, Tensile) Modulus, GPa 70
200
Elongation at Break, % 2.7 to 3.8
40
Fatigue Strength, MPa 76 to 84
340
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
77
Tensile Strength: Ultimate (UTS), MPa 290 to 310
800
Tensile Strength: Yield (Proof), MPa 200 to 230
400

Thermal Properties

Latent Heat of Fusion, J/g 470
290
Maximum Temperature: Mechanical, °C 170
920
Melting Completion (Liquidus), °C 620
1400
Melting Onset (Solidus), °C 570
1360
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 150
15
Thermal Expansion, µm/m-K 22
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 39
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 130
2.9

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
14
Density, g/cm3 2.7
7.7
Embodied Carbon, kg CO2/kg material 8.0
2.9
Embodied Energy, MJ/kg 150
42
Embodied Water, L/kg 1120
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 7.5 to 9.8
270
Resilience: Unit (Modulus of Resilience), kJ/m3 290 to 380
400
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 51
25
Strength to Weight: Axial, points 30 to 32
29
Strength to Weight: Bending, points 36 to 37
25
Thermal Diffusivity, mm2/s 60
4.0
Thermal Shock Resistance, points 13 to 14
17

Alloy Composition

Aluminum (Al), % 91.7 to 94.1
0
Carbon (C), % 0
0.050 to 0.1
Chromium (Cr), % 0
17.5 to 18.5
Copper (Cu), % 1.0 to 1.5
0 to 0.4
Iron (Fe), % 0 to 0.2
63.5 to 67.9
Magnesium (Mg), % 0.4 to 0.6
0
Manganese (Mn), % 0 to 0.1
9.0 to 10
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0
5.0 to 6.0
Nitrogen (N), % 0
0.25 to 0.32
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 4.5 to 5.5
0.3 to 0.6
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0