MakeItFrom.com
Menu (ESC)

C355.0 Aluminum vs. EN 1.4889 Cast Nickel

C355.0 aluminum belongs to the aluminum alloys classification, while EN 1.4889 cast nickel belongs to the nickel alloys. There are 25 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C355.0 aluminum and the bottom bar is EN 1.4889 cast nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
200
Elongation at Break, % 2.7 to 3.8
3.4
Fatigue Strength, MPa 76 to 84
110
Poisson's Ratio 0.33
0.27
Shear Modulus, GPa 26
79
Tensile Strength: Ultimate (UTS), MPa 290 to 310
500
Tensile Strength: Yield (Proof), MPa 200 to 230
270

Thermal Properties

Latent Heat of Fusion, J/g 470
350
Maximum Temperature: Mechanical, °C 170
1160
Melting Completion (Liquidus), °C 620
1360
Melting Onset (Solidus), °C 570
1320
Specific Heat Capacity, J/kg-K 900
480
Thermal Expansion, µm/m-K 22
14

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
55
Density, g/cm3 2.7
7.9
Embodied Carbon, kg CO2/kg material 8.0
8.5
Embodied Energy, MJ/kg 150
120
Embodied Water, L/kg 1120
280

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 7.5 to 9.8
14
Resilience: Unit (Modulus of Resilience), kJ/m3 290 to 380
180
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 51
25
Strength to Weight: Axial, points 30 to 32
18
Strength to Weight: Bending, points 36 to 37
18
Thermal Shock Resistance, points 13 to 14
13

Alloy Composition

Aluminum (Al), % 91.7 to 94.1
0
Carbon (C), % 0
0.35 to 0.45
Chromium (Cr), % 0
32.5 to 37.5
Copper (Cu), % 1.0 to 1.5
0
Iron (Fe), % 0 to 0.2
10.5 to 21.2
Magnesium (Mg), % 0.4 to 0.6
0
Manganese (Mn), % 0 to 0.1
1.0 to 1.5
Nickel (Ni), % 0
42 to 46
Niobium (Nb), % 0
1.5 to 2.0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 4.5 to 5.5
1.5 to 2.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0