MakeItFrom.com
Menu (ESC)

C355.0 Aluminum vs. EN 1.4931 Steel

C355.0 aluminum belongs to the aluminum alloys classification, while EN 1.4931 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C355.0 aluminum and the bottom bar is EN 1.4931 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 86 to 90
240
Elastic (Young's, Tensile) Modulus, GPa 70
200
Elongation at Break, % 2.7 to 3.8
17
Fatigue Strength, MPa 76 to 84
410
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
76
Tensile Strength: Ultimate (UTS), MPa 290 to 310
810
Tensile Strength: Yield (Proof), MPa 200 to 230
620

Thermal Properties

Latent Heat of Fusion, J/g 470
270
Maximum Temperature: Mechanical, °C 170
600
Melting Completion (Liquidus), °C 620
1460
Melting Onset (Solidus), °C 570
1420
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 150
24
Thermal Expansion, µm/m-K 22
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 39
9.8
Electrical Conductivity: Equal Weight (Specific), % IACS 130
11

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
8.5
Density, g/cm3 2.7
7.8
Embodied Carbon, kg CO2/kg material 8.0
2.9
Embodied Energy, MJ/kg 150
42
Embodied Water, L/kg 1120
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 7.5 to 9.8
130
Resilience: Unit (Modulus of Resilience), kJ/m3 290 to 380
970
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 51
25
Strength to Weight: Axial, points 30 to 32
29
Strength to Weight: Bending, points 36 to 37
25
Thermal Diffusivity, mm2/s 60
6.5
Thermal Shock Resistance, points 13 to 14
22

Alloy Composition

Aluminum (Al), % 91.7 to 94.1
0
Carbon (C), % 0
0.2 to 0.26
Chromium (Cr), % 0
11.3 to 12.2
Copper (Cu), % 1.0 to 1.5
0
Iron (Fe), % 0 to 0.2
83.2 to 86.8
Magnesium (Mg), % 0.4 to 0.6
0
Manganese (Mn), % 0 to 0.1
0.5 to 0.8
Molybdenum (Mo), % 0
1.0 to 1.2
Nickel (Ni), % 0
0 to 1.0
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 4.5 to 5.5
0 to 0.4
Sulfur (S), % 0
0 to 0.020
Titanium (Ti), % 0 to 0.2
0
Tungsten (W), % 0
0 to 0.5
Vanadium (V), % 0
0.25 to 0.35
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0