MakeItFrom.com
Menu (ESC)

C355.0 Aluminum vs. EN 2.4851 Nickel

C355.0 aluminum belongs to the aluminum alloys classification, while EN 2.4851 nickel belongs to the nickel alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C355.0 aluminum and the bottom bar is EN 2.4851 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 86 to 90
190
Elastic (Young's, Tensile) Modulus, GPa 70
200
Elongation at Break, % 2.7 to 3.8
34
Fatigue Strength, MPa 76 to 84
170
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
76
Tensile Strength: Ultimate (UTS), MPa 290 to 310
650
Tensile Strength: Yield (Proof), MPa 200 to 230
230

Thermal Properties

Latent Heat of Fusion, J/g 470
320
Maximum Temperature: Mechanical, °C 170
1200
Melting Completion (Liquidus), °C 620
1360
Melting Onset (Solidus), °C 570
1310
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 150
11
Thermal Expansion, µm/m-K 22
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 39
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 130
1.6

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
49
Density, g/cm3 2.7
8.2
Embodied Carbon, kg CO2/kg material 8.0
8.1
Embodied Energy, MJ/kg 150
120
Embodied Water, L/kg 1120
280

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 7.5 to 9.8
170
Resilience: Unit (Modulus of Resilience), kJ/m3 290 to 380
130
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 51
23
Strength to Weight: Axial, points 30 to 32
22
Strength to Weight: Bending, points 36 to 37
20
Thermal Diffusivity, mm2/s 60
2.9
Thermal Shock Resistance, points 13 to 14
17

Alloy Composition

Aluminum (Al), % 91.7 to 94.1
1.0 to 1.7
Boron (B), % 0
0 to 0.0060
Carbon (C), % 0
0.030 to 0.1
Chromium (Cr), % 0
21 to 25
Copper (Cu), % 1.0 to 1.5
0 to 0.5
Iron (Fe), % 0 to 0.2
7.7 to 18
Magnesium (Mg), % 0.4 to 0.6
0
Manganese (Mn), % 0 to 0.1
0 to 1.0
Nickel (Ni), % 0
58 to 63
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 4.5 to 5.5
0 to 0.5
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.2
0 to 0.5
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0