MakeItFrom.com
Menu (ESC)

C355.0 Aluminum vs. Grade M35-1 Nickel

C355.0 aluminum belongs to the aluminum alloys classification, while grade M35-1 nickel belongs to the nickel alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C355.0 aluminum and the bottom bar is grade M35-1 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
160
Elongation at Break, % 2.7 to 3.8
28
Fatigue Strength, MPa 76 to 84
130
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 26
62
Tensile Strength: Ultimate (UTS), MPa 290 to 310
500
Tensile Strength: Yield (Proof), MPa 200 to 230
190

Thermal Properties

Latent Heat of Fusion, J/g 470
280
Maximum Temperature: Mechanical, °C 170
900
Melting Completion (Liquidus), °C 620
1280
Melting Onset (Solidus), °C 570
1240
Specific Heat Capacity, J/kg-K 900
430
Thermal Conductivity, W/m-K 150
22
Thermal Expansion, µm/m-K 22
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 39
3.3
Electrical Conductivity: Equal Weight (Specific), % IACS 130
3.4

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
55
Density, g/cm3 2.7
8.8
Embodied Carbon, kg CO2/kg material 8.0
8.2
Embodied Energy, MJ/kg 150
120
Embodied Water, L/kg 1120
250

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 7.5 to 9.8
110
Resilience: Unit (Modulus of Resilience), kJ/m3 290 to 380
120
Stiffness to Weight: Axial, points 14
10
Stiffness to Weight: Bending, points 51
21
Strength to Weight: Axial, points 30 to 32
16
Strength to Weight: Bending, points 36 to 37
16
Thermal Diffusivity, mm2/s 60
5.7
Thermal Shock Resistance, points 13 to 14
17

Alloy Composition

Aluminum (Al), % 91.7 to 94.1
0
Carbon (C), % 0
0 to 0.35
Copper (Cu), % 1.0 to 1.5
26 to 33
Iron (Fe), % 0 to 0.2
0 to 3.5
Magnesium (Mg), % 0.4 to 0.6
0
Manganese (Mn), % 0 to 0.1
0 to 1.5
Nickel (Ni), % 0
59.8 to 74
Niobium (Nb), % 0
0 to 0.5
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 4.5 to 5.5
0 to 1.3
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0