MakeItFrom.com
Menu (ESC)

C355.0 Aluminum vs. Grade Ti-Pd18 Titanium

C355.0 aluminum belongs to the aluminum alloys classification, while grade Ti-Pd18 titanium belongs to the titanium alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C355.0 aluminum and the bottom bar is grade Ti-Pd18 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 86 to 90
320
Elastic (Young's, Tensile) Modulus, GPa 70
110
Elongation at Break, % 2.7 to 3.8
17
Fatigue Strength, MPa 76 to 84
350
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 26
40
Tensile Strength: Ultimate (UTS), MPa 290 to 310
710
Tensile Strength: Yield (Proof), MPa 200 to 230
540

Thermal Properties

Latent Heat of Fusion, J/g 470
410
Maximum Temperature: Mechanical, °C 170
330
Melting Completion (Liquidus), °C 620
1640
Melting Onset (Solidus), °C 570
1590
Specific Heat Capacity, J/kg-K 900
550
Thermal Conductivity, W/m-K 150
8.2
Thermal Expansion, µm/m-K 22
9.1

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 39
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 130
2.7

Otherwise Unclassified Properties

Density, g/cm3 2.7
4.5
Embodied Carbon, kg CO2/kg material 8.0
41
Embodied Energy, MJ/kg 150
670
Embodied Water, L/kg 1120
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 7.5 to 9.8
110
Resilience: Unit (Modulus of Resilience), kJ/m3 290 to 380
1380
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 51
35
Strength to Weight: Axial, points 30 to 32
44
Strength to Weight: Bending, points 36 to 37
39
Thermal Diffusivity, mm2/s 60
3.3
Thermal Shock Resistance, points 13 to 14
52

Alloy Composition

Aluminum (Al), % 91.7 to 94.1
2.5 to 3.5
Carbon (C), % 0
0 to 0.1
Copper (Cu), % 1.0 to 1.5
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0 to 0.2
0 to 0.25
Magnesium (Mg), % 0.4 to 0.6
0
Manganese (Mn), % 0 to 0.1
0
Nickel (Ni), % 0
0 to 0.050
Oxygen (O), % 0
0 to 0.15
Palladium (Pd), % 0
0.040 to 0.080
Silicon (Si), % 4.5 to 5.5
0
Titanium (Ti), % 0 to 0.2
92.5 to 95.5
Vanadium (V), % 0
2.0 to 3.0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0
0 to 0.4