MakeItFrom.com
Menu (ESC)

C355.0 Aluminum vs. C78200 Nickel Silver

C355.0 aluminum belongs to the aluminum alloys classification, while C78200 nickel silver belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C355.0 aluminum and the bottom bar is C78200 nickel silver.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
110
Elongation at Break, % 2.7 to 3.8
3.0 to 40
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 26
43
Tensile Strength: Ultimate (UTS), MPa 290 to 310
370 to 630
Tensile Strength: Yield (Proof), MPa 200 to 230
170 to 570

Thermal Properties

Latent Heat of Fusion, J/g 470
190
Maximum Temperature: Mechanical, °C 170
160
Melting Completion (Liquidus), °C 620
1000
Melting Onset (Solidus), °C 570
970
Specific Heat Capacity, J/kg-K 900
390
Thermal Conductivity, W/m-K 150
48
Thermal Expansion, µm/m-K 22
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 39
11
Electrical Conductivity: Equal Weight (Specific), % IACS 130
12

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
28
Density, g/cm3 2.7
8.4
Embodied Carbon, kg CO2/kg material 8.0
3.3
Embodied Energy, MJ/kg 150
52
Embodied Water, L/kg 1120
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 7.5 to 9.8
18 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 290 to 380
130 to 1440
Stiffness to Weight: Axial, points 14
7.4
Stiffness to Weight: Bending, points 51
19
Strength to Weight: Axial, points 30 to 32
12 to 21
Strength to Weight: Bending, points 36 to 37
14 to 19
Thermal Diffusivity, mm2/s 60
15
Thermal Shock Resistance, points 13 to 14
12 to 21

Alloy Composition

Aluminum (Al), % 91.7 to 94.1
0
Copper (Cu), % 1.0 to 1.5
63 to 67
Iron (Fe), % 0 to 0.2
0 to 0.35
Lead (Pb), % 0
1.5 to 2.5
Magnesium (Mg), % 0.4 to 0.6
0
Manganese (Mn), % 0 to 0.1
0 to 0.5
Nickel (Ni), % 0
7.0 to 9.0
Silicon (Si), % 4.5 to 5.5
0
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.1
20.2 to 28.5
Residuals, % 0
0 to 0.5