MakeItFrom.com
Menu (ESC)

C355.0 Aluminum vs. N06045 Nickel

C355.0 aluminum belongs to the aluminum alloys classification, while N06045 nickel belongs to the nickel alloys. There are 25 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C355.0 aluminum and the bottom bar is N06045 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
200
Elongation at Break, % 2.7 to 3.8
37
Fatigue Strength, MPa 76 to 84
210
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
77
Tensile Strength: Ultimate (UTS), MPa 290 to 310
690
Tensile Strength: Yield (Proof), MPa 200 to 230
270

Thermal Properties

Latent Heat of Fusion, J/g 470
350
Maximum Temperature: Mechanical, °C 170
1010
Melting Completion (Liquidus), °C 620
1350
Melting Onset (Solidus), °C 570
1300
Specific Heat Capacity, J/kg-K 900
480
Thermal Expansion, µm/m-K 22
13

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
42
Density, g/cm3 2.7
8.0
Embodied Carbon, kg CO2/kg material 8.0
6.9
Embodied Energy, MJ/kg 150
98
Embodied Water, L/kg 1120
250

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 7.5 to 9.8
200
Resilience: Unit (Modulus of Resilience), kJ/m3 290 to 380
180
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 51
24
Strength to Weight: Axial, points 30 to 32
24
Strength to Weight: Bending, points 36 to 37
22
Thermal Shock Resistance, points 13 to 14
18

Alloy Composition

Aluminum (Al), % 91.7 to 94.1
0
Carbon (C), % 0
0.050 to 0.12
Cerium (Ce), % 0
0.030 to 0.090
Chromium (Cr), % 0
26 to 29
Copper (Cu), % 1.0 to 1.5
0 to 0.3
Iron (Fe), % 0 to 0.2
21 to 25
Magnesium (Mg), % 0.4 to 0.6
0
Manganese (Mn), % 0 to 0.1
0 to 1.0
Nickel (Ni), % 0
45 to 50.4
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 4.5 to 5.5
2.5 to 3.0
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0