MakeItFrom.com
Menu (ESC)

C355.0 Aluminum vs. N10276 Nickel

C355.0 aluminum belongs to the aluminum alloys classification, while N10276 nickel belongs to the nickel alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C355.0 aluminum and the bottom bar is N10276 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
220
Elongation at Break, % 2.7 to 3.8
47
Fatigue Strength, MPa 76 to 84
280
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
84
Tensile Strength: Ultimate (UTS), MPa 290 to 310
780
Tensile Strength: Yield (Proof), MPa 200 to 230
320

Thermal Properties

Latent Heat of Fusion, J/g 470
320
Maximum Temperature: Mechanical, °C 170
960
Melting Completion (Liquidus), °C 620
1370
Melting Onset (Solidus), °C 570
1320
Specific Heat Capacity, J/kg-K 900
410
Thermal Conductivity, W/m-K 150
9.1
Thermal Expansion, µm/m-K 22
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 39
1.3
Electrical Conductivity: Equal Weight (Specific), % IACS 130
1.3

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
70
Density, g/cm3 2.7
9.1
Embodied Carbon, kg CO2/kg material 8.0
13
Embodied Energy, MJ/kg 150
170
Embodied Water, L/kg 1120
280

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 7.5 to 9.8
300
Resilience: Unit (Modulus of Resilience), kJ/m3 290 to 380
230
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 51
22
Strength to Weight: Axial, points 30 to 32
24
Strength to Weight: Bending, points 36 to 37
21
Thermal Diffusivity, mm2/s 60
2.4
Thermal Shock Resistance, points 13 to 14
23

Alloy Composition

Aluminum (Al), % 91.7 to 94.1
0
Carbon (C), % 0
0 to 0.010
Chromium (Cr), % 0
14.5 to 16.5
Cobalt (Co), % 0
0 to 2.5
Copper (Cu), % 1.0 to 1.5
0
Iron (Fe), % 0 to 0.2
4.0 to 7.0
Magnesium (Mg), % 0.4 to 0.6
0
Manganese (Mn), % 0 to 0.1
0 to 0.010
Molybdenum (Mo), % 0
15 to 17
Nickel (Ni), % 0
51 to 63.5
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 4.5 to 5.5
0 to 0.080
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.2
0
Tungsten (W), % 0
3.0 to 4.5
Vanadium (V), % 0
0 to 0.35
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0