MakeItFrom.com
Menu (ESC)

C443.0 Aluminum vs. EN 1.0454 Cast Steel

C443.0 aluminum belongs to the aluminum alloys classification, while EN 1.0454 cast steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C443.0 aluminum and the bottom bar is EN 1.0454 cast steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
190
Elongation at Break, % 9.0
25
Fatigue Strength, MPa 120
220
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
73
Tensile Strength: Ultimate (UTS), MPa 230
550
Tensile Strength: Yield (Proof), MPa 100
300

Thermal Properties

Latent Heat of Fusion, J/g 470
250
Maximum Temperature: Mechanical, °C 170
400
Melting Completion (Liquidus), °C 630
1470
Melting Onset (Solidus), °C 600
1430
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 140
53
Thermal Expansion, µm/m-K 22
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 37
7.8
Electrical Conductivity: Equal Weight (Specific), % IACS 120
8.9

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
1.7
Density, g/cm3 2.7
7.9
Embodied Carbon, kg CO2/kg material 7.9
1.4
Embodied Energy, MJ/kg 150
18
Embodied Water, L/kg 1120
45

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 17
110
Resilience: Unit (Modulus of Resilience), kJ/m3 70
240
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 51
24
Strength to Weight: Axial, points 24
19
Strength to Weight: Bending, points 31
19
Thermal Diffusivity, mm2/s 58
14
Thermal Shock Resistance, points 10
17

Alloy Composition

Aluminum (Al), % 89.6 to 95.5
0
Copper (Cu), % 0 to 0.6
0
Iron (Fe), % 0 to 2.0
99.935 to 100
Magnesium (Mg), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.35
0
Nickel (Ni), % 0 to 0.5
0
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 4.5 to 6.0
0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.25
0