MakeItFrom.com
Menu (ESC)

C443.0 Aluminum vs. EN 1.4587 Stainless Steel

C443.0 aluminum belongs to the aluminum alloys classification, while EN 1.4587 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C443.0 aluminum and the bottom bar is EN 1.4587 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 65
160
Elastic (Young's, Tensile) Modulus, GPa 71
200
Elongation at Break, % 9.0
34
Fatigue Strength, MPa 120
200
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
80
Tensile Strength: Ultimate (UTS), MPa 230
540
Tensile Strength: Yield (Proof), MPa 100
250

Thermal Properties

Latent Heat of Fusion, J/g 470
310
Maximum Temperature: Mechanical, °C 170
1100
Melting Completion (Liquidus), °C 630
1420
Melting Onset (Solidus), °C 600
1370
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 140
17
Thermal Expansion, µm/m-K 22
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 37
1.8
Electrical Conductivity: Equal Weight (Specific), % IACS 120
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
36
Density, g/cm3 2.7
8.1
Embodied Carbon, kg CO2/kg material 7.9
6.3
Embodied Energy, MJ/kg 150
87
Embodied Water, L/kg 1120
230

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 17
150
Resilience: Unit (Modulus of Resilience), kJ/m3 70
150
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 51
24
Strength to Weight: Axial, points 24
18
Strength to Weight: Bending, points 31
18
Thermal Diffusivity, mm2/s 58
4.5
Thermal Shock Resistance, points 10
13

Alloy Composition

Aluminum (Al), % 89.6 to 95.5
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
24 to 26
Copper (Cu), % 0 to 0.6
2.0 to 3.0
Iron (Fe), % 0 to 2.0
32.7 to 41.9
Magnesium (Mg), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.35
0 to 2.0
Molybdenum (Mo), % 0
4.0 to 5.0
Nickel (Ni), % 0 to 0.5
28 to 30
Nitrogen (N), % 0
0.15 to 0.25
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 4.5 to 6.0
0 to 1.0
Sulfur (S), % 0
0 to 0.025
Tin (Sn), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.25
0