MakeItFrom.com
Menu (ESC)

C443.0 Aluminum vs. N06025 Nickel

C443.0 aluminum belongs to the aluminum alloys classification, while N06025 nickel belongs to the nickel alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C443.0 aluminum and the bottom bar is N06025 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
200
Elongation at Break, % 9.0
32
Fatigue Strength, MPa 120
220
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
76
Shear Strength, MPa 130
500
Tensile Strength: Ultimate (UTS), MPa 230
760
Tensile Strength: Yield (Proof), MPa 100
310

Thermal Properties

Latent Heat of Fusion, J/g 470
320
Maximum Temperature: Mechanical, °C 170
1000
Melting Completion (Liquidus), °C 630
1350
Melting Onset (Solidus), °C 600
1300
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 140
11
Thermal Expansion, µm/m-K 22
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 37
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 120
1.6

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
50
Density, g/cm3 2.7
8.2
Embodied Carbon, kg CO2/kg material 7.9
8.4
Embodied Energy, MJ/kg 150
120
Embodied Water, L/kg 1120
290

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 17
190
Resilience: Unit (Modulus of Resilience), kJ/m3 70
240
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 51
24
Strength to Weight: Axial, points 24
26
Strength to Weight: Bending, points 31
22
Thermal Diffusivity, mm2/s 58
2.9
Thermal Shock Resistance, points 10
21

Alloy Composition

Aluminum (Al), % 89.6 to 95.5
1.8 to 2.4
Carbon (C), % 0
0.15 to 0.25
Chromium (Cr), % 0
24 to 26
Copper (Cu), % 0 to 0.6
0 to 0.1
Iron (Fe), % 0 to 2.0
8.0 to 11
Magnesium (Mg), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.35
0 to 0.15
Nickel (Ni), % 0 to 0.5
59.2 to 65.9
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 4.5 to 6.0
0 to 0.5
Sulfur (S), % 0
0 to 0.010
Tin (Sn), % 0 to 0.15
0
Titanium (Ti), % 0
0.1 to 0.2
Yttrium (Y), % 0
0.050 to 0.12
Zinc (Zn), % 0 to 0.5
0.010 to 0.1
Residuals, % 0 to 0.25
0