MakeItFrom.com
Menu (ESC)

C443.0 Aluminum vs. N06255 Nickel

C443.0 aluminum belongs to the aluminum alloys classification, while N06255 nickel belongs to the nickel alloys. There are 26 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C443.0 aluminum and the bottom bar is N06255 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
210
Elongation at Break, % 9.0
45
Fatigue Strength, MPa 120
210
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
81
Shear Strength, MPa 130
460
Tensile Strength: Ultimate (UTS), MPa 230
660
Tensile Strength: Yield (Proof), MPa 100
250

Thermal Properties

Latent Heat of Fusion, J/g 470
320
Maximum Temperature: Mechanical, °C 170
1000
Melting Completion (Liquidus), °C 630
1470
Melting Onset (Solidus), °C 600
1420
Specific Heat Capacity, J/kg-K 900
450
Thermal Expansion, µm/m-K 22
13

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
55
Density, g/cm3 2.7
8.5
Embodied Carbon, kg CO2/kg material 7.9
9.4
Embodied Energy, MJ/kg 150
130
Embodied Water, L/kg 1120
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 17
230
Resilience: Unit (Modulus of Resilience), kJ/m3 70
150
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 51
23
Strength to Weight: Axial, points 24
22
Strength to Weight: Bending, points 31
20
Thermal Shock Resistance, points 10
17

Alloy Composition

Aluminum (Al), % 89.6 to 95.5
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
23 to 26
Copper (Cu), % 0 to 0.6
0 to 1.2
Iron (Fe), % 0 to 2.0
6.0 to 24
Magnesium (Mg), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.35
0 to 1.0
Molybdenum (Mo), % 0
6.0 to 9.0
Nickel (Ni), % 0 to 0.5
47 to 52
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 4.5 to 6.0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.15
0
Titanium (Ti), % 0
0 to 0.69
Tungsten (W), % 0
0 to 3.0
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.25
0