MakeItFrom.com
Menu (ESC)

C443.0 Aluminum vs. S33425 Stainless Steel

C443.0 aluminum belongs to the aluminum alloys classification, while S33425 stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C443.0 aluminum and the bottom bar is S33425 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 65
170
Elastic (Young's, Tensile) Modulus, GPa 71
200
Elongation at Break, % 9.0
45
Fatigue Strength, MPa 120
210
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
79
Shear Strength, MPa 130
400
Tensile Strength: Ultimate (UTS), MPa 230
580
Tensile Strength: Yield (Proof), MPa 100
230

Thermal Properties

Latent Heat of Fusion, J/g 470
300
Maximum Temperature: Mechanical, °C 170
1100
Melting Completion (Liquidus), °C 630
1430
Melting Onset (Solidus), °C 600
1380
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 140
14
Thermal Expansion, µm/m-K 22
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 37
2.1
Electrical Conductivity: Equal Weight (Specific), % IACS 120
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
27
Density, g/cm3 2.7
7.9
Embodied Carbon, kg CO2/kg material 7.9
5.1
Embodied Energy, MJ/kg 150
71
Embodied Water, L/kg 1120
190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 17
210
Resilience: Unit (Modulus of Resilience), kJ/m3 70
140
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 51
25
Strength to Weight: Axial, points 24
20
Strength to Weight: Bending, points 31
19
Thermal Diffusivity, mm2/s 58
3.7
Thermal Shock Resistance, points 10
13

Alloy Composition

Aluminum (Al), % 89.6 to 95.5
0.15 to 0.6
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0
21 to 23
Copper (Cu), % 0 to 0.6
0
Iron (Fe), % 0 to 2.0
47.2 to 56.7
Magnesium (Mg), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.35
0 to 1.5
Molybdenum (Mo), % 0
2.0 to 3.0
Nickel (Ni), % 0 to 0.5
20 to 23
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 4.5 to 6.0
0 to 1.0
Sulfur (S), % 0
0 to 0.020
Tin (Sn), % 0 to 0.15
0
Titanium (Ti), % 0
0.15 to 0.6
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.25
0