MakeItFrom.com
Menu (ESC)

Class 3 Tungsten vs. Grade 5 Titanium

Class 3 tungsten belongs to the otherwise unclassified metals classification, while grade 5 titanium belongs to the titanium alloys. There are 25 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is class 3 tungsten and the bottom bar is grade 5 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 270
110
Elongation at Break, % 3.4
8.6 to 11
Poisson's Ratio 0.28
0.32
Rockwell C Hardness 30
33
Shear Modulus, GPa 100
40
Tensile Strength: Ultimate (UTS), MPa 830
1000 to 1190
Tensile Strength: Yield (Proof), MPa 580
910 to 1110

Thermal Properties

Latent Heat of Fusion, J/g 170
410
Specific Heat Capacity, J/kg-K 120
560
Thermal Conductivity, W/m-K 30
6.8
Thermal Expansion, µm/m-K 4.5
8.9

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 15
1.0
Electrical Conductivity: Equal Weight (Specific), % IACS 8.5
2.0

Otherwise Unclassified Properties

Density, g/cm3 15
4.4
Embodied Carbon, kg CO2/kg material 23
38
Embodied Energy, MJ/kg 360
610
Embodied Water, L/kg 150
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 25
100 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 630
3980 to 5880
Stiffness to Weight: Axial, points 9.6
13
Stiffness to Weight: Bending, points 14
35
Strength to Weight: Axial, points 15
62 to 75
Strength to Weight: Bending, points 13
50 to 56
Thermal Diffusivity, mm2/s 15
2.7
Thermal Shock Resistance, points 49
76 to 91

Alloy Composition

Aluminum (Al), % 0
5.5 to 6.8
Carbon (C), % 0
0 to 0.080
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0
0 to 0.4
Nitrogen (N), % 0
0 to 0.050
Oxygen (O), % 0
0 to 0.2
Titanium (Ti), % 0
87.4 to 91
Tungsten (W), % 95
0
Vanadium (V), % 0
3.5 to 4.5
Yttrium (Y), % 0
0 to 0.0050
Residuals, % 0
0 to 0.4