MakeItFrom.com
Menu (ESC)

EN 1.0034 Steel vs. N10675 Nickel

EN 1.0034 steel belongs to the iron alloys classification, while N10675 nickel belongs to the nickel alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN 1.0034 steel and the bottom bar is N10675 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
220
Elongation at Break, % 9.0 to 32
47
Fatigue Strength, MPa 140 to 170
350
Poisson's Ratio 0.29
0.31
Shear Modulus, GPa 73
85
Shear Strength, MPa 220 to 230
610
Tensile Strength: Ultimate (UTS), MPa 340 to 380
860
Tensile Strength: Yield (Proof), MPa 180 to 280
400

Thermal Properties

Latent Heat of Fusion, J/g 250
320
Maximum Temperature: Mechanical, °C 400
910
Melting Completion (Liquidus), °C 1460
1420
Melting Onset (Solidus), °C 1420
1370
Specific Heat Capacity, J/kg-K 470
380
Thermal Conductivity, W/m-K 53
11
Thermal Expansion, µm/m-K 12
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.0
1.3
Electrical Conductivity: Equal Weight (Specific), % IACS 8.0
1.2

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
80
Density, g/cm3 7.9
9.3
Embodied Carbon, kg CO2/kg material 1.4
16
Embodied Energy, MJ/kg 18
210
Embodied Water, L/kg 45
280

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 31 to 95
330
Resilience: Unit (Modulus of Resilience), kJ/m3 84 to 210
350
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
22
Strength to Weight: Axial, points 12 to 13
26
Strength to Weight: Bending, points 14 to 15
22
Thermal Diffusivity, mm2/s 14
3.1
Thermal Shock Resistance, points 11 to 12
26

Alloy Composition

Aluminum (Al), % 0
0 to 0.5
Carbon (C), % 0 to 0.15
0 to 0.010
Chromium (Cr), % 0
1.0 to 3.0
Cobalt (Co), % 0
0 to 3.0
Copper (Cu), % 0
0 to 0.2
Iron (Fe), % 98.7 to 100
1.0 to 3.0
Manganese (Mn), % 0 to 0.7
0 to 3.0
Molybdenum (Mo), % 0
27 to 32
Nickel (Ni), % 0
51.3 to 71
Niobium (Nb), % 0
0 to 0.2
Phosphorus (P), % 0 to 0.045
0 to 0.030
Silicon (Si), % 0 to 0.35
0 to 0.1
Sulfur (S), % 0 to 0.045
0 to 0.010
Tantalum (Ta), % 0
0 to 0.2
Titanium (Ti), % 0
0 to 0.2
Tungsten (W), % 0
0 to 3.0
Vanadium (V), % 0
0 to 0.2
Zinc (Zn), % 0
0 to 0.1