MakeItFrom.com
Menu (ESC)

EN 1.0215 Steel vs. AISI 434 Stainless Steel

Both EN 1.0215 steel and AISI 434 stainless steel are iron alloys. They have 82% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.0215 steel and the bottom bar is AISI 434 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 100
170
Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 25
24
Fatigue Strength, MPa 180
220
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 73
78
Shear Strength, MPa 230
330
Tensile Strength: Ultimate (UTS), MPa 350
520
Tensile Strength: Yield (Proof), MPa 250
320

Thermal Properties

Latent Heat of Fusion, J/g 250
280
Maximum Temperature: Mechanical, °C 400
880
Melting Completion (Liquidus), °C 1460
1510
Melting Onset (Solidus), °C 1420
1430
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 53
25
Thermal Expansion, µm/m-K 12
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.0
2.5
Electrical Conductivity: Equal Weight (Specific), % IACS 8.0
2.9

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
9.5
Density, g/cm3 7.9
7.7
Embodied Carbon, kg CO2/kg material 1.4
2.4
Embodied Energy, MJ/kg 18
33
Embodied Water, L/kg 45
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 79
110
Resilience: Unit (Modulus of Resilience), kJ/m3 160
260
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 13
19
Strength to Weight: Bending, points 14
18
Thermal Diffusivity, mm2/s 14
6.7
Thermal Shock Resistance, points 11
19

Alloy Composition

Carbon (C), % 0 to 0.14
0 to 0.12
Chromium (Cr), % 0
16 to 18
Iron (Fe), % 98.7 to 100
78.6 to 83.3
Manganese (Mn), % 0 to 0.7
0 to 1.0
Molybdenum (Mo), % 0
0.75 to 1.3
Phosphorus (P), % 0 to 0.045
0 to 0.040
Silicon (Si), % 0 to 0.35
0 to 1.0
Sulfur (S), % 0 to 0.045
0 to 0.030