MakeItFrom.com
Menu (ESC)

EN 1.0254 Steel vs. EN 1.4935 Stainless Steel

Both EN 1.0254 steel and EN 1.4935 stainless steel are iron alloys. They have 86% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.0254 steel and the bottom bar is EN 1.4935 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 27
16 to 18
Fatigue Strength, MPa 190
350 to 400
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 73
76
Shear Strength, MPa 280
480 to 540
Tensile Strength: Ultimate (UTS), MPa 430
780 to 880
Tensile Strength: Yield (Proof), MPa 250
570 to 670

Thermal Properties

Latent Heat of Fusion, J/g 250
270
Maximum Temperature: Mechanical, °C 400
740
Melting Completion (Liquidus), °C 1460
1460
Melting Onset (Solidus), °C 1420
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 50
24
Thermal Expansion, µm/m-K 12
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.2
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 8.3
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 2.1
9.0
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 1.5
2.9
Embodied Energy, MJ/kg 19
42
Embodied Water, L/kg 47
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100
130
Resilience: Unit (Modulus of Resilience), kJ/m3 170
830 to 1160
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 15
28 to 31
Strength to Weight: Bending, points 16
24 to 26
Thermal Diffusivity, mm2/s 13
6.5
Thermal Shock Resistance, points 14
27 to 30

Alloy Composition

Carbon (C), % 0 to 0.16
0.17 to 0.24
Chromium (Cr), % 0 to 0.3
11 to 12.5
Copper (Cu), % 0 to 0.3
0
Iron (Fe), % 97.2 to 100
83 to 86.7
Manganese (Mn), % 0 to 1.2
0.3 to 0.8
Molybdenum (Mo), % 0 to 0.080
0.8 to 1.2
Nickel (Ni), % 0 to 0.3
0.3 to 0.8
Niobium (Nb), % 0 to 0.010
0
Phosphorus (P), % 0 to 0.025
0 to 0.025
Silicon (Si), % 0 to 0.35
0.1 to 0.5
Sulfur (S), % 0 to 0.020
0 to 0.015
Titanium (Ti), % 0 to 0.040
0
Tungsten (W), % 0
0.4 to 0.6
Vanadium (V), % 0 to 0.020
0.2 to 0.35