MakeItFrom.com
Menu (ESC)

EN 1.0258 Steel vs. EN 1.8935 Steel

Both EN 1.0258 steel and EN 1.8935 steel are iron alloys. Both are furnished in the normalized condition. They have a very high 99% of their average alloy composition in common.

For each property being compared, the top bar is EN 1.0258 steel and the bottom bar is EN 1.8935 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 140
190
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 23
19
Fatigue Strength, MPa 200
330
Impact Strength: V-Notched Charpy, J 38
71
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 73
73
Shear Strength, MPa 310
400
Tensile Strength: Ultimate (UTS), MPa 490
640
Tensile Strength: Yield (Proof), MPa 290
490

Thermal Properties

Latent Heat of Fusion, J/g 250
250
Maximum Temperature: Mechanical, °C 400
400
Melting Completion (Liquidus), °C 1460
1460
Melting Onset (Solidus), °C 1420
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 49
46
Thermal Expansion, µm/m-K 12
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.3
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 8.3
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 2.1
2.5
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 1.5
1.7
Embodied Energy, MJ/kg 19
24
Embodied Water, L/kg 47
51

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 95
110
Resilience: Unit (Modulus of Resilience), kJ/m3 220
640
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 17
23
Strength to Weight: Bending, points 18
21
Thermal Diffusivity, mm2/s 13
12
Thermal Shock Resistance, points 16
19

Alloy Composition

Aluminum (Al), % 0
0.020 to 0.050
Carbon (C), % 0 to 0.2
0 to 0.2
Chromium (Cr), % 0 to 0.3
0 to 0.3
Copper (Cu), % 0 to 0.3
0 to 0.7
Iron (Fe), % 96.9 to 100
95.2 to 98.9
Manganese (Mn), % 0 to 1.4
1.1 to 1.7
Molybdenum (Mo), % 0 to 0.080
0 to 0.1
Nickel (Ni), % 0 to 0.3
0 to 0.8
Niobium (Nb), % 0 to 0.010
0 to 0.050
Nitrogen (N), % 0
0 to 0.025
Phosphorus (P), % 0 to 0.025
0 to 0.025
Silicon (Si), % 0 to 0.4
0 to 0.6
Sulfur (S), % 0 to 0.020
0 to 0.010
Titanium (Ti), % 0 to 0.040
0 to 0.030
Vanadium (V), % 0 to 0.020
0 to 0.2