MakeItFrom.com
Menu (ESC)

EN 1.0308 Steel vs. EN 1.1203 Steel

Both EN 1.0308 steel and EN 1.1203 steel are iron alloys. They have a very high 99% of their average alloy composition in common.

For each property being compared, the top bar is EN 1.0308 steel and the bottom bar is EN 1.1203 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 100 to 130
200 to 230
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 7.8 to 28
12 to 15
Fatigue Strength, MPa 140 to 200
210 to 310
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 73
72
Shear Strength, MPa 230 to 260
420 to 480
Tensile Strength: Ultimate (UTS), MPa 360 to 440
690 to 780
Tensile Strength: Yield (Proof), MPa 190 to 340
340 to 480

Thermal Properties

Latent Heat of Fusion, J/g 250
250
Maximum Temperature: Mechanical, °C 400
400
Melting Completion (Liquidus), °C 1460
1460
Melting Onset (Solidus), °C 1420
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 51
48
Thermal Expansion, µm/m-K 12
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.1
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 8.1
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
2.1
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 1.4
1.4
Embodied Energy, MJ/kg 18
19
Embodied Water, L/kg 46
47

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 32 to 95
69 to 100
Resilience: Unit (Modulus of Resilience), kJ/m3 93 to 300
310 to 610
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 13 to 16
25 to 28
Strength to Weight: Bending, points 14 to 16
22 to 24
Thermal Diffusivity, mm2/s 14
13
Thermal Shock Resistance, points 11 to 14
22 to 25

Alloy Composition

Carbon (C), % 0 to 0.17
0.52 to 0.6
Chromium (Cr), % 0
0 to 0.4
Iron (Fe), % 98.2 to 100
97.1 to 98.9
Manganese (Mn), % 0 to 1.2
0.6 to 0.9
Molybdenum (Mo), % 0
0 to 0.1
Nickel (Ni), % 0
0 to 0.4
Phosphorus (P), % 0 to 0.045
0 to 0.035
Silicon (Si), % 0 to 0.35
0 to 0.4
Sulfur (S), % 0 to 0.045
0 to 0.035