MakeItFrom.com
Menu (ESC)

EN 1.0308 Steel vs. C63000 Bronze

EN 1.0308 steel belongs to the iron alloys classification, while C63000 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN 1.0308 steel and the bottom bar is C63000 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 7.8 to 28
7.9 to 15
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 73
44
Shear Strength, MPa 230 to 260
400 to 470
Tensile Strength: Ultimate (UTS), MPa 360 to 440
660 to 790
Tensile Strength: Yield (Proof), MPa 190 to 340
330 to 390

Thermal Properties

Latent Heat of Fusion, J/g 250
230
Maximum Temperature: Mechanical, °C 400
230
Melting Completion (Liquidus), °C 1460
1050
Melting Onset (Solidus), °C 1420
1040
Specific Heat Capacity, J/kg-K 470
440
Thermal Conductivity, W/m-K 51
39
Thermal Expansion, µm/m-K 12
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.1
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 8.1
7.6

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
29
Density, g/cm3 7.9
8.2
Embodied Carbon, kg CO2/kg material 1.4
3.5
Embodied Energy, MJ/kg 18
57
Embodied Water, L/kg 46
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 32 to 95
47 to 82
Resilience: Unit (Modulus of Resilience), kJ/m3 93 to 300
470 to 640
Stiffness to Weight: Axial, points 13
7.9
Stiffness to Weight: Bending, points 24
20
Strength to Weight: Axial, points 13 to 16
22 to 26
Strength to Weight: Bending, points 14 to 16
20 to 23
Thermal Diffusivity, mm2/s 14
11
Thermal Shock Resistance, points 11 to 14
23 to 27

Alloy Composition

Aluminum (Al), % 0
9.0 to 11
Carbon (C), % 0 to 0.17
0
Copper (Cu), % 0
76.8 to 85
Iron (Fe), % 98.2 to 100
2.0 to 4.0
Manganese (Mn), % 0 to 1.2
0 to 1.5
Nickel (Ni), % 0
4.0 to 5.5
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 0.35
0 to 0.25
Sulfur (S), % 0 to 0.045
0
Tin (Sn), % 0
0 to 0.2
Zinc (Zn), % 0
0 to 0.3
Residuals, % 0
0 to 0.5