MakeItFrom.com
Menu (ESC)

EN 1.0314 Steel vs. A413.0 Aluminum

EN 1.0314 steel belongs to the iron alloys classification, while A413.0 aluminum belongs to the aluminum alloys. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.0314 steel and the bottom bar is A413.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 92 to 120
80
Elastic (Young's, Tensile) Modulus, GPa 190
73
Elongation at Break, % 24 to 25
3.5
Fatigue Strength, MPa 140 to 220
130
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 73
27
Shear Strength, MPa 200 to 250
170
Tensile Strength: Ultimate (UTS), MPa 320 to 400
240
Tensile Strength: Yield (Proof), MPa 190 to 310
130

Thermal Properties

Latent Heat of Fusion, J/g 250
570
Maximum Temperature: Mechanical, °C 400
170
Melting Completion (Liquidus), °C 1470
590
Melting Onset (Solidus), °C 1430
580
Specific Heat Capacity, J/kg-K 470
900
Thermal Conductivity, W/m-K 53
120
Thermal Expansion, µm/m-K 12
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 6.9
31
Electrical Conductivity: Equal Weight (Specific), % IACS 7.9
110

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
9.5
Density, g/cm3 7.9
2.6
Embodied Carbon, kg CO2/kg material 1.4
7.6
Embodied Energy, MJ/kg 18
140
Embodied Water, L/kg 46
1040

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 68 to 87
7.1
Resilience: Unit (Modulus of Resilience), kJ/m3 95 to 250
120
Stiffness to Weight: Axial, points 13
16
Stiffness to Weight: Bending, points 24
54
Strength to Weight: Axial, points 11 to 14
25
Strength to Weight: Bending, points 13 to 15
33
Thermal Diffusivity, mm2/s 14
52
Thermal Shock Resistance, points 10 to 13
11

Alloy Composition

Aluminum (Al), % 0.020 to 0.060
82.9 to 89
Carbon (C), % 0 to 0.030
0
Copper (Cu), % 0
0 to 1.0
Iron (Fe), % 99.365 to 99.78
0 to 1.3
Magnesium (Mg), % 0
0 to 0.1
Manganese (Mn), % 0.2 to 0.4
0 to 0.35
Nickel (Ni), % 0
0 to 0.5
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 0.1
11 to 13
Sulfur (S), % 0 to 0.025
0
Tin (Sn), % 0
0 to 0.15
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0
0 to 0.25