MakeItFrom.com
Menu (ESC)

EN 1.0314 Steel vs. CC496K Bronze

EN 1.0314 steel belongs to the iron alloys classification, while CC496K bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.0314 steel and the bottom bar is CC496K bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 92 to 120
72
Elastic (Young's, Tensile) Modulus, GPa 190
97
Elongation at Break, % 24 to 25
8.6
Poisson's Ratio 0.29
0.35
Shear Modulus, GPa 73
36
Tensile Strength: Ultimate (UTS), MPa 320 to 400
210
Tensile Strength: Yield (Proof), MPa 190 to 310
99

Thermal Properties

Latent Heat of Fusion, J/g 250
170
Maximum Temperature: Mechanical, °C 400
140
Melting Completion (Liquidus), °C 1470
900
Melting Onset (Solidus), °C 1430
820
Specific Heat Capacity, J/kg-K 470
340
Thermal Conductivity, W/m-K 53
52
Thermal Expansion, µm/m-K 12
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 6.9
11
Electrical Conductivity: Equal Weight (Specific), % IACS 7.9
11

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
31
Density, g/cm3 7.9
9.2
Embodied Carbon, kg CO2/kg material 1.4
3.3
Embodied Energy, MJ/kg 18
52
Embodied Water, L/kg 46
380

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 68 to 87
15
Resilience: Unit (Modulus of Resilience), kJ/m3 95 to 250
50
Stiffness to Weight: Axial, points 13
5.9
Stiffness to Weight: Bending, points 24
17
Strength to Weight: Axial, points 11 to 14
6.5
Strength to Weight: Bending, points 13 to 15
8.6
Thermal Diffusivity, mm2/s 14
17
Thermal Shock Resistance, points 10 to 13
8.1

Alloy Composition

Aluminum (Al), % 0.020 to 0.060
0 to 0.010
Antimony (Sb), % 0
0 to 0.5
Carbon (C), % 0 to 0.030
0
Copper (Cu), % 0
72 to 79.5
Iron (Fe), % 99.365 to 99.78
0 to 0.25
Lead (Pb), % 0
13 to 17
Manganese (Mn), % 0.2 to 0.4
0 to 0.2
Nickel (Ni), % 0
0.5 to 2.0
Phosphorus (P), % 0 to 0.020
0 to 0.1
Silicon (Si), % 0 to 0.1
0 to 0.010
Sulfur (S), % 0 to 0.025
0 to 0.1
Tin (Sn), % 0
6.0 to 8.0
Zinc (Zn), % 0
0 to 2.0