MakeItFrom.com
Menu (ESC)

EN 1.0314 Steel vs. C90200 Bronze

EN 1.0314 steel belongs to the iron alloys classification, while C90200 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.0314 steel and the bottom bar is C90200 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 92 to 120
70
Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 24 to 25
30
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 73
41
Tensile Strength: Ultimate (UTS), MPa 320 to 400
260
Tensile Strength: Yield (Proof), MPa 190 to 310
110

Thermal Properties

Latent Heat of Fusion, J/g 250
200
Maximum Temperature: Mechanical, °C 400
180
Melting Completion (Liquidus), °C 1470
1050
Melting Onset (Solidus), °C 1430
880
Specific Heat Capacity, J/kg-K 470
370
Thermal Conductivity, W/m-K 53
62
Thermal Expansion, µm/m-K 12
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 6.9
13
Electrical Conductivity: Equal Weight (Specific), % IACS 7.9
13

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
34
Density, g/cm3 7.9
8.8
Embodied Carbon, kg CO2/kg material 1.4
3.3
Embodied Energy, MJ/kg 18
53
Embodied Water, L/kg 46
370

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 68 to 87
63
Resilience: Unit (Modulus of Resilience), kJ/m3 95 to 250
55
Stiffness to Weight: Axial, points 13
7.0
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 11 to 14
8.3
Strength to Weight: Bending, points 13 to 15
10
Thermal Diffusivity, mm2/s 14
19
Thermal Shock Resistance, points 10 to 13
9.5

Alloy Composition

Aluminum (Al), % 0.020 to 0.060
0 to 0.0050
Antimony (Sb), % 0
0 to 0.2
Carbon (C), % 0 to 0.030
0
Copper (Cu), % 0
91 to 94
Iron (Fe), % 99.365 to 99.78
0 to 0.2
Lead (Pb), % 0
0 to 0.3
Manganese (Mn), % 0.2 to 0.4
0
Nickel (Ni), % 0
0 to 0.5
Phosphorus (P), % 0 to 0.020
0 to 0.050
Silicon (Si), % 0 to 0.1
0 to 0.0050
Sulfur (S), % 0 to 0.025
0 to 0.050
Tin (Sn), % 0
6.0 to 8.0
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0
0 to 0.6