MakeItFrom.com
Menu (ESC)

EN 1.0345 Steel vs. EN 1.0599 Steel

Both EN 1.0345 steel and EN 1.0599 steel are iron alloys. Both are furnished in the normalized condition. They have a very high 99% of their average alloy composition in common.

For each property being compared, the top bar is EN 1.0345 steel and the bottom bar is EN 1.0599 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 120
180
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 27
20
Fatigue Strength, MPa 170
310
Impact Strength: V-Notched Charpy, J 44
27
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 73
73
Shear Strength, MPa 270
390
Tensile Strength: Ultimate (UTS), MPa 420
620
Tensile Strength: Yield (Proof), MPa 230
440

Thermal Properties

Latent Heat of Fusion, J/g 250
250
Maximum Temperature: Mechanical, °C 400
400
Melting Completion (Liquidus), °C 1460
1460
Melting Onset (Solidus), °C 1420
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 49
47
Thermal Expansion, µm/m-K 12
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.2
7.4
Electrical Conductivity: Equal Weight (Specific), % IACS 8.3
8.5

Otherwise Unclassified Properties

Base Metal Price, % relative 2.1
2.4
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 1.5
1.8
Embodied Energy, MJ/kg 19
24
Embodied Water, L/kg 48
50

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 96
110
Resilience: Unit (Modulus of Resilience), kJ/m3 140
520
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 15
22
Strength to Weight: Bending, points 16
21
Thermal Diffusivity, mm2/s 13
13
Thermal Shock Resistance, points 13
20

Alloy Composition

Aluminum (Al), % 0.020 to 0.024
0.010 to 0.050
Carbon (C), % 0 to 0.16
0.16 to 0.22
Chromium (Cr), % 0 to 0.3
0 to 0.3
Copper (Cu), % 0 to 0.3
0 to 0.3
Iron (Fe), % 97.2 to 99.38
96.1 to 98.4
Manganese (Mn), % 0.6 to 1.2
1.3 to 1.7
Molybdenum (Mo), % 0 to 0.080
0 to 0.080
Nickel (Ni), % 0 to 0.3
0 to 0.4
Niobium (Nb), % 0 to 0.020
0 to 0.070
Nitrogen (N), % 0 to 0.012
0 to 0.020
Phosphorus (P), % 0 to 0.025
0 to 0.030
Silicon (Si), % 0 to 0.35
0.1 to 0.5
Sulfur (S), % 0 to 0.010
0 to 0.035
Titanium (Ti), % 0 to 0.030
0 to 0.050
Vanadium (V), % 0 to 0.020
0.080 to 0.15