MakeItFrom.com
Menu (ESC)

EN 1.0455 Cast Steel vs. EN 1.0481 Steel

Both EN 1.0455 cast steel and EN 1.0481 steel are iron alloys. Both are furnished in the normalized condition. They have a very high 99% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN 1.0455 cast steel and the bottom bar is EN 1.0481 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 25
24
Fatigue Strength, MPa 200
210
Impact Strength: V-Notched Charpy, J 35
46
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 73
73
Tensile Strength: Ultimate (UTS), MPa 530
510
Tensile Strength: Yield (Proof), MPa 270
300

Thermal Properties

Latent Heat of Fusion, J/g 250
250
Maximum Temperature: Mechanical, °C 400
400
Melting Completion (Liquidus), °C 1460
1460
Melting Onset (Solidus), °C 1420
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 52
50
Thermal Expansion, µm/m-K 12
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.1
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 8.1
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
2.2
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 1.4
1.5
Embodied Energy, MJ/kg 18
20
Embodied Water, L/kg 46
49

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
100
Resilience: Unit (Modulus of Resilience), kJ/m3 190
230
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 19
18
Strength to Weight: Bending, points 18
18
Thermal Diffusivity, mm2/s 14
13
Thermal Shock Resistance, points 17
16

Alloy Composition

Aluminum (Al), % 0
0.020 to 0.024
Carbon (C), % 0 to 0.23
0.080 to 0.2
Chromium (Cr), % 0
0 to 0.3
Copper (Cu), % 0
0 to 0.3
Iron (Fe), % 97.9 to 100
96.8 to 99
Manganese (Mn), % 0 to 1.2
0.9 to 1.5
Molybdenum (Mo), % 0
0 to 0.080
Nickel (Ni), % 0
0 to 0.3
Niobium (Nb), % 0
0 to 0.020
Nitrogen (N), % 0
0 to 0.012
Phosphorus (P), % 0 to 0.030
0 to 0.025
Silicon (Si), % 0 to 0.6
0 to 0.4
Sulfur (S), % 0 to 0.025
0 to 0.010
Titanium (Ti), % 0
0 to 0.030
Vanadium (V), % 0
0 to 0.020