MakeItFrom.com
Menu (ESC)

EN 1.0478 Steel vs. EN 1.7375 Steel

Both EN 1.0478 steel and EN 1.7375 steel are iron alloys. They have a very high 97% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN 1.0478 steel and the bottom bar is EN 1.7375 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 130
180
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 24
20
Fatigue Strength, MPa 170
270
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 73
74
Shear Strength, MPa 280
380
Tensile Strength: Ultimate (UTS), MPa 440
620
Tensile Strength: Yield (Proof), MPa 230
400

Thermal Properties

Latent Heat of Fusion, J/g 250
250
Maximum Temperature: Mechanical, °C 400
460
Melting Completion (Liquidus), °C 1460
1470
Melting Onset (Solidus), °C 1420
1430
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 49
39
Thermal Expansion, µm/m-K 12
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.3
7.6
Electrical Conductivity: Equal Weight (Specific), % IACS 8.3
8.7

Otherwise Unclassified Properties

Base Metal Price, % relative 2.2
3.9
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 1.5
1.8
Embodied Energy, MJ/kg 20
23
Embodied Water, L/kg 48
59

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 90
110
Resilience: Unit (Modulus of Resilience), kJ/m3 150
420
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 16
22
Strength to Weight: Bending, points 16
20
Thermal Diffusivity, mm2/s 13
11
Thermal Shock Resistance, points 14
18

Alloy Composition

Aluminum (Al), % 0 to 0.060
0.010 to 0.040
Carbon (C), % 0 to 0.18
0.1 to 0.15
Chromium (Cr), % 0 to 0.3
2.0 to 2.5
Copper (Cu), % 0 to 0.2
0 to 0.25
Iron (Fe), % 96.9 to 99.4
94.5 to 96.7
Manganese (Mn), % 0.6 to 1.4
0.3 to 0.8
Molybdenum (Mo), % 0 to 0.080
0.9 to 1.1
Nickel (Ni), % 0 to 0.3
0 to 0.3
Niobium (Nb), % 0 to 0.030
0
Nitrogen (N), % 0 to 0.020
0 to 0.012
Phosphorus (P), % 0 to 0.025
0 to 0.015
Silicon (Si), % 0 to 0.4
0 to 0.3
Sulfur (S), % 0 to 0.015
0 to 0.010
Vanadium (V), % 0 to 0.050
0