MakeItFrom.com
Menu (ESC)

EN 1.0481 Steel vs. EN 1.3536 Steel

Both EN 1.0481 steel and EN 1.3536 steel are iron alloys. They have a very high 98% of their average alloy composition in common. There are 25 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is EN 1.0481 steel and the bottom bar is EN 1.3536 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 150
200
Elastic (Young's, Tensile) Modulus, GPa 190
190
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 73
73
Tensile Strength: Ultimate (UTS), MPa 510
660

Thermal Properties

Latent Heat of Fusion, J/g 250
250
Maximum Temperature: Mechanical, °C 400
440
Melting Completion (Liquidus), °C 1460
1450
Melting Onset (Solidus), °C 1420
1410
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 50
41
Thermal Expansion, µm/m-K 12
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.3
7.4
Electrical Conductivity: Equal Weight (Specific), % IACS 8.3
8.5

Otherwise Unclassified Properties

Base Metal Price, % relative 2.2
2.9
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 1.5
1.6
Embodied Energy, MJ/kg 20
21
Embodied Water, L/kg 49
55

Common Calculations

Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 18
23
Strength to Weight: Bending, points 18
22
Thermal Diffusivity, mm2/s 13
11
Thermal Shock Resistance, points 16
19

Alloy Composition

Aluminum (Al), % 0.020 to 0.024
0 to 0.050
Carbon (C), % 0.080 to 0.2
0.93 to 1.1
Chromium (Cr), % 0 to 0.3
1.7 to 2.0
Copper (Cu), % 0 to 0.3
0 to 0.3
Iron (Fe), % 96.8 to 99
96 to 97.4
Manganese (Mn), % 0.9 to 1.5
0.6 to 0.8
Molybdenum (Mo), % 0 to 0.080
0.2 to 0.35
Nickel (Ni), % 0 to 0.3
0
Niobium (Nb), % 0 to 0.020
0
Nitrogen (N), % 0 to 0.012
0
Oxygen (O), % 0
0 to 0.0015
Phosphorus (P), % 0 to 0.025
0 to 0.025
Silicon (Si), % 0 to 0.4
0.15 to 0.45
Sulfur (S), % 0 to 0.010
0 to 0.030
Titanium (Ti), % 0 to 0.030
0
Vanadium (V), % 0 to 0.020
0