MakeItFrom.com
Menu (ESC)

EN 1.0481 Steel vs. S35140 Stainless Steel

Both EN 1.0481 steel and S35140 stainless steel are iron alloys. They have 50% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.0481 steel and the bottom bar is S35140 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 150
210
Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 24
34
Fatigue Strength, MPa 210
250
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 73
78
Shear Strength, MPa 330
460
Tensile Strength: Ultimate (UTS), MPa 510
690
Tensile Strength: Yield (Proof), MPa 300
310

Thermal Properties

Latent Heat of Fusion, J/g 250
300
Maximum Temperature: Mechanical, °C 400
1100
Melting Completion (Liquidus), °C 1460
1420
Melting Onset (Solidus), °C 1420
1370
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 50
14
Thermal Expansion, µm/m-K 12
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.3
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 8.3
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 2.2
31
Density, g/cm3 7.8
8.0
Embodied Carbon, kg CO2/kg material 1.5
5.5
Embodied Energy, MJ/kg 20
78
Embodied Water, L/kg 49
190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100
190
Resilience: Unit (Modulus of Resilience), kJ/m3 230
250
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 18
24
Strength to Weight: Bending, points 18
22
Thermal Diffusivity, mm2/s 13
3.7
Thermal Shock Resistance, points 16
16

Alloy Composition

Aluminum (Al), % 0.020 to 0.024
0
Carbon (C), % 0.080 to 0.2
0 to 0.1
Chromium (Cr), % 0 to 0.3
20 to 22
Copper (Cu), % 0 to 0.3
0
Iron (Fe), % 96.8 to 99
44.1 to 52.7
Manganese (Mn), % 0.9 to 1.5
1.0 to 3.0
Molybdenum (Mo), % 0 to 0.080
1.0 to 2.0
Nickel (Ni), % 0 to 0.3
25 to 27
Niobium (Nb), % 0 to 0.020
0.25 to 0.75
Nitrogen (N), % 0 to 0.012
0.080 to 0.2
Phosphorus (P), % 0 to 0.025
0 to 0.045
Silicon (Si), % 0 to 0.4
0 to 0.75
Sulfur (S), % 0 to 0.010
0 to 0.030
Titanium (Ti), % 0 to 0.030
0
Vanadium (V), % 0 to 0.020
0